
Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems

Robotics
Reference
Guide
Version 2.0
This guide undergoes continuous
revision, including the addition of
more reference guides. Be sure to
visit the engineering section of the
Virtual Academy to ensure that you
have the most recent version. To
determine whether you have the
most up-to-date version, reference
the date in the filename.

Robotics Reference Guide

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems

Reference Links Each Reference below is a link to that file.

Building with VEX
	 Introduction to the Structure Subsystem - VEX Inventor’s Guide
	 Robust Fabrication - VEX Inventor’s Guide
	 Introduction to the Motion Subsystem - VEX Inventor’s Guide
	 Cortex Pin Guide - ROBOTC Reference

Getting Started
	 VEX Cortex Configuration Over USB - ROBOTC Reference
	 Using the PLTW Template - ROBOTC Reference
	 Sample Programs - ROBOTC Reference
	 Running a Program - ROBOTC Reference
	 VEXnet Joystick Configuration - ROBOTC Reference
	
Programming
	 Sense, Plan, Act - ROBOTC Reference
	 Behaviors - ROBOTC Reference
	 Pseudocode & Flow Charts - ROBOTC Reference
	 Program Design - ROBOTC Reference
	 ROBOTC Natural Language Cortex Quick Reference - ROBOTC Reference
	 The ROBOTC Debugger - ROBOTC Reference
	 White Space - ROBOTC Reference
	 Comments - ROBOTC Reference
	 Boolean Logic - ROBOTC Reference
	 Variables - ROBOTC Reference
	 Reserved Words - ROBOTC Reference
	 While Loops - ROBOTC Reference
	 If Statements - ROBOTC Reference
	 Variables - ROBOTC Reference	
	 Thresholds - ROBOTC Reference
	 Timers - ROBOTC Reference
	 Functions - ROBOTC Reference
	 Switch Cases - ROBOTC Reference
	 Random Numbers - ROBOTC Reference
	
Troubleshooting
	 Error Messages in ROBOTC Code- ROBOTC Reference
	 Troubleshooting ROBOTC with Cortex - ROBOTC Reference
	

	
	

Robotics Reference Guide

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems

Reference Links Each Reference below is a link to that file.

Motor Outputs
	 2-Wire Motor 269 - VEX Inventor’s Guide
	 2-Wire Motor 393 - VEX Inventor’s Guide
	 Servo Modules - ROBOTC Reference
	 Servo Motor - VEX Inventor’s Guide
	 Flashlight - VEX Inventor’s Guide
	 Color Camera - VEX Inventor’s Guide

Digital Inputs / Outputs
	 Ultrasonic Sensor - VEX Inventor’s Guide
	 Bumper Switch - VEX Inventor’s Guide
	 Limit Switch - VEX Inventor’s Guide
	 Optical Shaft Encoder - ROBOTC Reference
	 Optical Shaft Encoder - VEX Inventor’s Guide
	
Analog Inputs
	 Potentiometers - ROBOTC Reference
	 Potentiometers - VEX Inventor’s Guide
	 Line Following - VEX Inventor’s Guide
	 Light Sensor - VEX Inventor’s Guide

ROBOTC Reference Glossary

VEX Inventors Guide Glossary

	
	

 2 • 10 Inventor’s Guide

Structure

27
6-

21
78

-E
-0

61
0

The parts in the VEX Structure Subsystem form the base of every robot. These parts
are the “skeleton” of the robot to which all other parts are attached. This subsystem
consists of all the main structural components in the VEX Design System including all
the metal components and hardware pieces. These pieces connect together to form the
“skeleton” or frame of the robot.

Introduction to the Structure Subsystem

In the VEX Robotics
Design System the
majority of the
components in the
Structure Subsystem are
made from bent sheet-
metal. These pieces
(either aluminum or
steel) come in a variety
of shapes and sizes and
are suited to different
functions on a robot.
Different types of parts
are designed for different
applications.

The VEX structural pieces all contain square holes (0.182” sq) on a standardized 1/2”
grid. This standardized hole-spacing allows for VEX parts to be connected in almost any
configuration. The smaller diamond holes are there to help users cut pieces using tin-snips or
fine-toothed hacksaws without leaving sharp corners.

2 • 11Inventor’s Guide

Structure

27
6-

21
78

-E
-0

61
0

Introduction to the Structure Subsystem, continued

VEX square holes are also used
as “alignment features” on
some components. These pieces
will “snap” in place into these
square holes. For example, when
mounting a VEX Bearing Flat
there are small tabs which will
stick through the square hole and
hold it perfectly in alignment.
This allows for good placement of
components with key alignment
requirements. (It would be bad if
a bearing slipped out of place!)
Note that hardware is still
required to hold the Bearing Flat
onto a structural piece.

Hardware is an important part
of the Structure Subsystem.
Metal components can be directly
attached together using the
8-32 screws and nuts which are
standard in the VEX kit. The
8-32 screws fit through the
standard VEX square holes.
These screws come in a variety
of lengths and can be used to
attach multiple thicknesses of
metal together, or to mount
other components onto the VEX
structural pieces.

Allen wrenches and other tools
are used to tighten or loosen the
hardware.

Note: There are two types of screws that are part of the VEX Robotics Design System.
• Size 8-32 screws are the primary screws used to build robot structure.
• Size 6-32 screws are smaller screws which are used for specialty applications like

mounting the VEX Motors and Servos.

 2 • 12 Inventor’s Guide

Structure

27
6-

21
78

-E
-0

61
0

Introduction to the Structure Subsystem, continued

HINT:
Attach components together
with multiple screws from
different directions to keep
structural members aligned
correctly and for maximum
strength!

When using screws to attach things together, there are three types of nuts which can be used.
• Nylock nuts have a plastic insert in them which will prevent them from unscrewing. These

are harder to install, as you need to use an open-ended wrench to tighten them up. These
nuts will not come off due to vibration or movement.

• KEPS nuts have a ring of “teeth” on one side of them. These teeth will grip the piece
they are being installed on. This means you do not NEED to use an open-ended wrench to
tighten them (but it is still recommended). These nuts are installed with the teeth facing the
structure. These nuts can loosen up over time if not properly tightened; however they will
work great in most applications.

• Regular nuts have no locking feature. These basic hex nuts require a wrench to install and
may loosen up over time, especially when under vibration or movement. They are very thin
and can be used in some locations where it is not practical to use a Nylock or KEPS nut.

WARNING: It is important to be careful when tightening screws. The allen wrenches
may round or “strip out” the socket on the head of the screw if they are not fully
inserted into the socket.

Use care when tightening screws to prevent stripping out the head of the screw!

Regular (Hex) NutKEPS NutNylock Nut

2 • 13Inventor’s Guide

Structure

27
6-

21
78

-E
-0

61
0

Introduction to the Structure Subsystem, continued

Components can also be offset
from each other using 8-32
threaded standoffs; these standoffs
come in a variety of lengths and
add great versatility to the VEX
kit. These standoffs work great
for mounting components in the
VEX system as well as for creating
structural beams of great strength.

One of the key features of many VEX structural parts is their “bend-able” and “cut-able”
nature. Users can easily modify many of these structural parts into new configurations better
suited for their current needs. Flat plates can be bent into brackets. Many metal components
can be cut to custom lengths. These parts were DESIGNED to be modified.

Note: It is almost impossible to fully flatten a piece once it has been bent.

 2 • 14 Inventor’s Guide

Structure

27
6-

21
78

-E
-0

61
0

Introduction to the Structure Subsystem, continued

The VEX structural components come in a variety of shapes and sizes. Each of these
structural shapes may be strong in some ways but weak in others. It is very easy to bend
a piece of VEX Bar in one orientation, but it is almost impossible to bend it when it is in
another orientation. Applying this type of knowledge is the basis of structural engineering.
One can experiment with each piece and see how it can be used to create an extremely strong
robot frame!

When designing a robot’s structure, it is important to think about making it strong and
robust while still trying to keep it as lightweight as possible. Sometimes overbuilding can be
just as detrimental as underbuilding.

The frame is the skeleton of the robot and should be designed to be integrated cleanly with
the robot’s other components. The overall robot design should dictate the chassis, frame, and
structural design; not vice-versa.

Design is an iterative process; experiment to find out what works best for a given robot.

 2 • 20

Structure

Inventor’s Guide

27
6-

21
78

-E
-0

61
0

Fasteners
The most common
problem with robots that
fall apart or lose pieces
easily is that groups
of parts are not joined
securely enough and
separate from each other
and move around.

EXAMPLE 1:
Arm Extension
A robot needs to be able
to reach a goal that is
high off the ground. The
goal is so high that a
single long piece will not
reach it. Two pieces must
be joined together to
reach the desired height.

This attachment uses a
single screw to join the
two bars. As you can see,
it has a problem when
weight is applied to it:
the extension bar rotates
around the screw. Also, if
this screw were to come
loose or fall out for any
reason, the entire arm
would come crashing
down.

������
�����

���������������
�������������
�
��������

Concepts to Understand, continued

Robust Fabrication

2 • 21

Structure

Inventor’s Guide

27
6-

21
78

-E
-0

61
0

EXAMPLE 1,
continued:
Arm Extension,
continued
By using two screws,
this design removes the
possibility of rotation
around either one of
them. Additionally, the
design is more resilient.

����������
���������
��������

Concepts to Understand, continued

Robust Fabrication, continued

 2 • 22

Structure

Inventor’s Guide

27
6-

21
78

-E
-0

61
0

EXAMPLE 2:
Bracing
The extended bars are
now attached firmly to
each other, and the long
arm is mounted on your
robot. However, the long
arm is going to generate
huge stresses at its
mounting point because
it is so long, especially
when the arm is used to
lift a load. ������������

��������������

�������������

���
�
�	�����������
�����������������

���������������
�������������
������������
����
�������������

Concepts to Understand, continued

Robust Fabrication, continued

2 • 23

Structure

Inventor’s Guide

27
6-

21
78

-E
-0

61
0

EXAMPLE 2:
Bracing the Bars,
continued
In order to keep the arm
from falling down, you
will need to brace it. You
could use a second screw
to hold it, like you did
with the arm itself, but
because the arm is such
a long lever arm, that
screw would actually be
in danger of deforming
or breaking. A better
solution would be to give
the structure support
at a point closer to the
end, thus reducing the
mechanical advantage
that the arm has relative
to the supports.

The arm is now more
stable and better able
to withstand stresses
placed on it from both
its own weight, and any
external forces acting
on it. The bracing arm
has both decreased the
mechanical advantage
from the long lever arm,
and spread the load over
two supports instead of
just one.

�����������������
������������������
���
������������

	����������
����������������
������������
���������

������������

�
����������

Concepts to Understand, continued

Robust Fabrication, continued

 3 • 28

Motion

Inventor’s Guide

27
6-

21
78

-E
-0

61
0

Introduction to the Motion Subsystem

The Motion Subsystem comprises all the components in the VEX Robotics Design System
which make a robot move. These components are critical to every robot. The Motion
Subsystem is tightly integrated with the components of the Structure Subsystem in almost all
robot designs.

In the VEX Robotics Design System the motion components are all easily integrated together.
This makes it simple to create very complex systems using the basic motion building blocks.

The most fundamental concept of the Motion
Subsystem is the use of a square shaft. Most of the
VEX motion components use a square hole in their
hub which fits tightly on the square VEX shafts.
This square hole – square shaft system transmits
torque without using cumbersome collars or clamps
to grip a round shaft.

The square shaft has rounded corners which allow it
to spin easily in a round hole. This allows the use of
simple bearings made from Delrin (a slippery plastic).
The Delrin bearing will provide a low-friction piece for
the shafts to turn in.

These VEX Delrin bearings come
in two types, the most common
of which is a Bearing Flat. The
Bearing Flat mounts directly on a
piece of VEX structure and supports
a shaft which runs perpendicular and
directly through the structure.

3 • 29

Motion

Inventor’s Guide

27
6-

21
78

-E
-0

61
0
Introduction to the Motion Subsystem, continued

Another type of bearing used in the
VEX Motion Subsystem is a Bearing
Block; these are similar to the “pillow-
blocks” used in industry. The Bearing
Block mounts on a piece of structure
and supports a shaft which is offset
either above, below, or to the side of the
structure.

Some bearings can be mounted to
VEX structural components with
Bearing Pop Rivets. These rivets are
pressed into place for quick mounting.
These Rivets are removable; pull out
the center piece by pulling up on the
head of the Rivet to get it to release.

HINT:
It is also possible to
to convert the square
hole(s) in some
Motion Subsystem
Components to a
round hole by using a
drill (approximately
0.175” diameter)
to create a round
hole that replaces
the part’s original
square hole. A VEX
square shaft can then
spin freely in the
newly created round
hole. This is useful
for some specialty
applications.

Drilled Center Hole

VEX Square Shaft Hole

 3 • 30

Motion

Inventor’s Guide

27
6-

21
78

-E
-0

61
0

The key component of any motion system is an actuator (an
actuator is something which causes a mechanical system to move).
In the VEX Robotics Design System, there are several different
actuator options. The most common types of actuators used are
the VEX Continuous Rotation Motors (the 3-Wire Motor and the
“high strength” 2-Wire Motor 393) and the VEX Servos. (For
more information on Motors & Servos refer to the “Concepts to
Understand” section of this chapter.)

Each VEX Robotics Motor & Servo comes with a square socket in
its face, designed to connect it to the VEX square shafts. By simply
inserting a shaft into this socket it is easy to transfer torque directly
from a motor into the rest of the Motion Subsystem.

The most common types of actuators used are the VEX Continuous
Rotation Motors (the 3-Wire Motor, the 2-Wire Motor 269, and the
“high strength” 2-Wire Motor 393) and the VEX Servos.

The Motion Subsystem also contains parts
designed to keep pieces positioned on a
VEX shaft. These pieces include washers,
spacers, and shaft collars. VEX Shaft
Collars slide onto a shaft and can be
fastened in place using a setscrew. Before
tightening the setscrew, it is important to
slide the Shaft Collars along the square
shafts until they are next to a fixed part
of the robot. The collar prevents the shaft
from sliding back and forth.

WARNING:
Some VEX Motors include a clutch assembly which is designed to prevent
damage to the internals of the VEX Motor in the event of a shock-load. For more
information on VEX Clutches, refer to the “Concepts to Understand” section of
this chapter.

HINT: The setscrews used in VEX Shaft Collars are 8-32 size threaded screws; this is the same
thread size used in the rest of the kit. There are many applications where it might be beneficial to
remove the setscrew from the Shaft Collar and use a normal VEX screw.

If a setscrew is lost any other VEX 8-32 screw can be substituted although the additional
height of the screw head must be considered!

Introduction to the Motion Subsystem, continued

Spacers

Collars

3 • 31

Motion

Inventor’s Guide

27
6-

21
78

-E
-0

61
0

In some applications excessive loads can damage the components of the VEX Motion
Subsystem. In these cases there are often ways to reinforce the system to reduce the load
each individual component will experience, or so that the load is no longer concentrated at a
single location on any given component.

EXAMPLE:
One example of a component
failure is fracturing gear teeth.
Another example is rounding
out the square hole the shaft
goes through. If either of
these situations exists an easy
way to fix it is to use multiple
gears in parallel. Try using two
gear trains next to each other
to decrease the load on each
individual gear.

There are several ways to transfer motion in the VEX Robotics Design System. A number
of Motion Subsystem accessory kits are available with a variety of advanced options. The
primary way to transfer motion is through the use of spur gears. Spur gears transfer motion
between parallel shafts, and can also be used to increase or decrease torque through the use of
gear ratios.

These gears can also be combined with sprocket & chain reductions, and also with advanced
gear types to create even more complex mechanisms.

Introduction to the Motion Subsystem, continued

Rotating Arm

Gear Train 2

Gear Train 1

 3 • 32

Motion

Inventor’s Guide

27
6-

21
78

-E
-0

61
0

It is easy to drive components of the VEX
Structure Subsystem using motion components in
several different ways. Most of the VEX Gears
have mounting holes in them on the standard VEX
1/2” hole spacing; it is simple to attach metal
pieces to these mounting holes. One benefit of
using this method is that in some configurations,
the final gear train will transfer torque directly into
the structural piece via a gear; this decreases the
torque running through the shaft itself.

Another option to drive structural pieces
using the Motion Subsystem is through a
Lock Bar. These pieces are designed such
that they can bolt onto any VEX structural
component using the standard VEX 1/2”
pitch. In the center of each piece there is a
square hole which matches the VEX square
shaft. As such, any VEX component can
be “locked” to a shaft using the Lock Bar
so that it will spin with the shaft. Note that
the insert in each Lock Bar is removable
and can be reinserted at any 15° increment.

Intake Rollers can be used in a variety of applications. These components were originally
designed to be rollers in an intake or accumulator mechanism. The “fins” or “fingers” of the
roller will flex when they contact an object; this will provide a gripping force which should
pull on the object.

HINT:
Try cutting off some of the fins
of an Intake Roller for better
performance on some objects.

Introduction to the Motion Subsystem, continued

Lock Bar

3 • 33

Motion

Inventor’s Guide

27
6-

21
78

-E
-0

61
0

The VEX Motion Subsystem contains a variety of components designed to help make robots
mobile. This includes a variety of wheel sizes, tank treads, and other options. Robots using
these in different configurations will have greatly varying performance characteristics.

Tank Tread components and wheels can also be used to construct intake mechanisms and
conveyor belts. These are frequently used on competition robots.

Introduction to the Motion Subsystem, continued

When designing the Motion Subsystem of a robot it is important to think about several
factors:
• First, it needs to be able to perform all the moving functions of the robot.
• Second, it needs to be robust enough to survive normal robot operation; it also needs to be

robust enough to survive some abnormal shock loads.
• Third, it needs to be well integrated into the overall robot system.

The Motion Subsystem combines with the Structure Subsystem to form the primary physical
parts of the robot. The motion components will be used throughout a robot’s construction,
and will likely be part of every major robot function. As such, this Subsystem needs to be well
thought out in advance.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Cortex Pin Guide • 1

Cortex Pin Guide
The VEX Cortex Microcontroller coordinates the
flow of all information and power on the robot.
It has built in bidirectional communication for
wireless driving, debugging and downloading
using the state of the art VEXnet 802.11
wireless link. The Microcontroller is the brain of
every VEX robot.

Motor Outputs:

•	 2-wire motors and flashlights
can be directly connected and
controlled in ports 1 and 10.

•	 3-wire motors and servos can be
directly connected and controlled
in ports 2 through 9.

•	 2-wire motors and flashlights can
be connected to ports 2 through 9
using a Motor Controller 29.

Analog Outputs & Digital Inputs / Outputs:

•	 Analog Outputs are used by any sensors that
provide a range of values. Examples include:
potentiometers, light sensors, line followers,
and accelerometers.

•	 Digital ports are available for digital input
signals Examples include: bumper switches,
limit switches, ultrasonic range finders, and
optical shaft encoders.

•	 The digital ports can also be used as digital

VEX Cortex Configuration over USB

You will need:
•	 1 VEX Cortex Microcontroller with one 7.2V Robot Battery
•	 A computer with ROBOTC for Cortex and PIC installed
•	 1 USB A-to-A Cable

The VEX Cortex is a fully programmable device, and is what enables you to incorporate
motors, sensors, an LCD screen, and remote control signals all in one robot. Inside of the
Cortex, there are two separate processors; a user processor handles all of the ROBOTC
programming instructions, and a master processor controls lower-level operations, like motor
control and VEXnet communication. This document is a guide for downloading the Master CPU
firmware and ROBOTC firmware to the VEX Cortex using the USB A-to-A cable.

1.	 Leaving the POWER switch in the OFF position, connect your Cortex to the computer using the USB
A-to-A cable. Once the cable is attached, move the POWER switch to the ON position.

1a.	 Connect the Cortex to your PC
Use the USB A-to-A cable to connect your Cortex
to your PC.

Note: The order detailed in this step is crucial.
When the Cortex is powered on, it immediately
tries to determine how it is connected (over
VEXnet, USB, or no connection). Some power
is provided to the Cortex over USB, which will
allow it to determine that it is connected to your
computer.

1b.	 Turn the Cortex ON
Make sure a 7.2V Robot battery is connected
and move the POWER switch on the Cortex to
the ON position.

Note: If your Cortex is connected to a mobile
robot, it’s recommended that you prop the
robot up to prevent its wheels from making
contact with a surface. The motors may turn on
and off during the firmware download process.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Main Title • 1

2.	 Specify that you are using the Cortex and how it is connected to your computer in ROBOTC.

2a.	 Detailed Preferences...
Go to View > Preferences and select Detailed
Preferences...

VEX Cortex Configuration over USB (cont.)

2b.	 Platform Settings
		 Make sure that the Platform tab is selected on the ROBOTC

Preferences window.

		 Next, specify the Natural Language (VEX Cortex) as your Platform
Type.

Finally, to program directly over the USB A-to-A cable, select the
option that specifys the USB Wired Cable.
Press OK to finalize your settings.
Note: The Automatic Selection option should be used if you will be
switching between VEXnet using the USB-to-Serial Programming
Cable, and the USB A-to-A Cable.

Note: The Platform Type can also be modified by going to the Robot menu in ROBOTC, selecting Platform Type, and
choosing one of the available options.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Main Title • 2

3.	 The VEX Cortex Download Method controls how ROBOTC downloads firmware and
programs to your Cortex, as well as what types of connections your Cortex checks for when
it is powered on. Confirm that your VEX Cortex Download Method is set to Download Using
VEXnet or USB or Download Using USB Only.

VEX Cortex Configuration over USB (cont.)

Option 1: Download Using VEXnet or USB
With this option selected, ROBOTC will download ROBOTC firmware and programs to your
Cortex using a VEXnet or USB connection. In this mode, when the Cortex is powered ON it
will look for a VEXnet or USB connection for up to 10 seconds before running your program.
(The Automatic Selection option in the ROBOTC Preferences should be selected if you plan
on switching between VEXnet and USB as your download method.)

Option 2: Download Using USB Only
With this option selected, ROBOTC will download firmware and programs to your Cortex
using only the USB connection. In this mode, when the Cortex is powered ON it will
immediately run your program. This option is NOT recommended if you are using the
VEXnet Joysticks to download to the Cortex, or remotely control it.

Option 1: Download for Competition (VEXnet)
This option disables the ROBOTC debugger, and is not recommended for classroom use.

Important Note: Restarting the Cortex
The VEX Cortex Download Method setting is stored in ROBOTC and on the Cortex. If you
change the setting, the Cortex must be power cycled (turned fully off, and then back on)
before the change will take effect.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Main Title • 3

4.	 Go to Robot > Download Firmware > Master CPU Firmware and select Standard File to
download the latest Master CPU Firmware to your robot.

4. 	Download Progress
A Download Progress window will appear and begin the download process. When the window
closes, the firmware download is complete. A ROBOTC Message will appear, and remind you to
also download the ROBOTC Firmware.

VEX Cortex Configuration over USB (cont.)

Note: You only need to download the Master CPU Firmware once,
when you first start using a VEX Cortex with ROBOTC, or when you
upgrade to a newer version of ROBOTC. Switching programs or
download methods does not require a re-download.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Main Title • 4

5.	 The ROBOTC Firmware enables you to download ROBOTC programs to your robot and utilize
the various debug windows. Go to Robot > Download Firmware > ROBOTC Firmware and select
Standard File to download the ROBOTC Firmware to your robot.

5. 	Download Progress
A Download Progress window will appear and begin the download process. When the window closes,
the firmware download is complete.

Note: You only need to download the ROBOTC Firmware once, when you first start using a VEX
Cortex with ROBOTC, or when you upgrade to a newer version of ROBOTC.

VEX Cortex Configuration over USB (cont.)

End of Lesson
Once the Download Progress window closes, the ROBOTC Firmware download is complete.
Your VEX Cortex is now ready to be programmed in ROBOTC.

If you are also using the VEXnet Joysticks, you can follow the provided instructions in the VEXnet
Joysticks Setup document. Otherwise, move on to the Downloading Sample Programs over USB
guide to learn how to download sample code, and verify that your setup is fully functional.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Main Title • 5

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Using the PLTW Template • 1

Using the PLTW Template

All Robotics Projects should be completed using the PLTW template. Open the PLTW folder in
Sample Programs to get the PLTWtemplate file.

The PLTW template is
the starting point for
all your programs. The
template is located in the
Sample Programs in the
PLTW folder.

Before typing in the
template you MUST go
to File, Save As, then
navigate to the folder
to save your robotics
projects in, appropriately
name your program, and
click Save.

Before typing in the template you MUST go to File, Save As, then navigate to the folder to save your robotics
projects in, appropriately name your program, and click Save.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Using the PLTW Template • 2

Using the PLTW Template
The commented section above task main provides an are to coplete your identification information date, a nar-
rative of what the program will and a place for pseudocode.

ROBOTC uses different colors to help identify code and text. This makes it easy to navigate through the pro-
gram in addition to providing clues about mistakes when items are a different color than expected.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Sample Programs • 1

Sample Programs
One of the easiest ways to begin programming is to start with existing code, try it out, and then
modify it. ROBOTC includes over 70 sample programs to help you get started with learning how to
program. To open a sample program, go to the File menu and select Open Sample Program. All of
the ROBOTC sample programs have “comments” that tell how the robot should be configured, and

To access Sample Programs go File > Open Sample Programs. 

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Running a Program • 1

Running a Program

1.	 Make sure your VEX is turned on. Move the switch from
 the OFF position to the ON position.

2.	 Make sure your robot is plugged in to the computer via
 the Programming Module. The program will be loaded
 onto the robot through this connection.

3. 	Click “Robot” on the top menu bar of the ROBOTC 		
	 window, and select “Download Program” or “Compile 		
and Download Program” (they’re effectively the same; 		
which one you see depends on whether you have made 		
changes since the last time you compiled).

4.	 You may be prompted to save your program. If so, save
it 	 ...in the same directory
as your other programs.

5.	 If there are errors in your code the compiler will identify 	
	 them for you and you will need to correct them before a 	
	 successful download can be completed.

Downloading places your program on the robot to be run on
command. You can run the program in two different ways.

•	 Run attached
If your robot is still connected to your computer you
can run the program which was just downloaded by
clicking “Start” in the “Program Debug” window which
automatically appears upon download. This will run your
program and because the robot is still connected to
the computer via its cable, you can obtain live variable
and sensor feedback by using such debug windows as
“Global Variables” and “Devices.”

•	 Run Independently
If you want to run the program while the robot is not
connected just remove the cable once the program has
been downloaded. On the back of the VEX, toggle the
power switch in the “Off” position, and then back to “On”.
The program will run immediately.

Once a program has been successfully written, it needs to be given to the robot to run.
The following steps will guide you through the process of downloading your program to the robot,
and then running it remotely or connected to your computer.

VEXnet Joystick Configuration in ROBOTC

You will need:
•	 1 VEXnet Joystick with 6 AAA Batteries
•	 1 Small Phillips Screwdriver
•	 A computer with ROBOTC for Cortex and PIC installed
•	 1 USB A-to-A Cable
•	 1 USB-to-Serial Programming Cable

The VEXnet Joystick enables more than just the remote control of your robot. It also
provides the wireless communication link between your computer and the VEX Cortex,
enabling you to wirelessly download firmware, programs and run the ROBOTC debugger. In
this document, you will learn how to configure VEXnet Joystick using ROBOTC.

1.	 Begin by installing 6 AAA batteries in the VEXnet Joystick. You will need a small Phillips screwdriver
to remove the battery cover.

1a. 	Install 6 AAA Batteries
Remove the battery cover using a small Phillips
screwdriver and install 6 AAA batteries, being
careful to align them as indicated.

This document is broken into 3 sections:
1. Downloading Firmware to the VEXnet Joystick
2. Creating a Wireless Link Between the VEXnet Joystick and VEX Cortex
3. Calibrating the VEXnet Joystick Values

Section 1: Downloading Firmware to the VEXnet Joystick

1b. 	Verify Correct Installation
Turn the VEXnet Joystick ON to verify that
you correctly installed the batteries. If any of
the LED’s on the front turn on, you installed
the batteries correctly. Turn the controller OFF
and secure the battery cover using the Philips
screwdriver.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems VEXnet Joystick Configuration • 1

2a.	 Connect the VEXnet Joystick
		 Use the USB A-to-A cable to connect your

VEXnet Joystick to your computer.

		 Note: The VEXnet light should turn green.

VEXnet Joystick Configuration in ROBOTC (cont.)

2.	 Connect the VEXnet Joystick to your computer using the USB A-to-A cable and turn it ON.

2b.	 Turn the VEXnet Joystick ON
		 Switch the VEXnet Joystick to the ON

postion.

		 Note: The Joystick light should turn green.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems VEXnet Joystick Configuration • 2

3.	 Go to Robot > Download Firmware > VEXnet Joystick Firmware and select Standard File to
download the latest VEXnet Joystick Firmware to the controller.

3. 	Download Progress
A Download Progress window will appear and begin the download process. When the window
closes, the firmware download is complete.

Note: You only need to download the VEXnet Joystick Firmware once, when you first start using
a VEX Cortex with ROBOTC, or when you upgrade to a newer version of ROBOTC.

VEXnet Joystick Configuration in ROBOTC (cont.)

End of Section: Downloading Firmware to the VEXnet Joystick
Once the Download Progress window closes, the VEXnet Joystick Firmware download is
complete.

Move on to the next section to learn how to create a wireless link between the VEXnet Joystick
and VEX Cortex.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems VEXnet Joystick Configuration • 3

VEXnet Joystick Configuration in ROBOTC (cont.)

Section 2: Creating a wireless link betwen the VEXnet Joystick and VEX Cortex

In this section, you will learn how to pair a VEX Cortex Microcontroller to a VEXnet Joystick,
allowing them to communicate over VEXnet. This section assumes that you have already
updated the master firmware on the VEX Cortex and VEXnet Remote Control.

VEXnet is an 802.11 WiFi communication system between the VEX Cortex and VEXnet Remote
Control.

VEXnet features include:
•	 Easy to connect (No IP addresses, MAC addresses, passwords, or special security modes)
•	 Multiple layers of security built-in and always on
•	 No wireless access point needed; each VEXnet pair makes its own private network
•	 Hundreds of robots can operate at once; every VEXnet robot has a hidden unique ID
•	 Optional tether for wired communication
•	 Optional 9V battery backup to maintain wireless link during a main 7.2V power loss
•	 LED scheme displays the status of the Robot, VEXnet link, and Game (Competition Mode)

1.	 Begin by verifying that both the Cortex and VEXnet Joystick are connected to charged batteries.

1a. Connect a Battery to the Cortex
Connect a 7.2V robot battery to the Cortex,
but do not power it ON.

1b. 	Install Batteries in the VEXnet Remote Control
Remove the battery cover plate on the remote
control. Install 6 AAA batteries, and replace the
battery cover plate. Do not power the remote
control ON.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems VEXnet Joystick Configuration • 4

2.	 Tether the USB port on the VEXnet Joystick to the USB port on the Cortex using a
USB A-to-A cable.

3.	 Power the Cortex ON. After a few seconds, ROBOT and VEXnet LEDs will blink
green, indicating that the Cortex and VEXnet Joystick have successfully paired.

2a. VEXnet Joystick USB Port
Plug one end of the USB A-to-A cable into
the USB port on the VEXnet Joystick.

2b. 	VEX Cortex USB Port
		 Plug the other end of the USB A-to-A cable

into the USB port on the VEX Cortex.

3a. Turn the Cortex ON

3b. 	Status LEDs
		 The ROBOT and VEXnet LEDs will

blink green once the Cortex and VEXnet
Joystick have successfully paired. The
GAME LED will also blink green if a
program is stored on your Cortex.

VEXnet Joystick Configuration in ROBOTC (cont.)

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems VEXnet Joystick Configuration • 5

4.	 Turn the Cortex OFF.

5.	 Remove the USB A-to-A cable from the VEXnet Joystick and Cortex.

6.	 Insert VEXnet USB Keys into both the VEXnet Joystick and Cortex.

6. 	VEXnet USB Keys
Insert VEXnet USB Keys into the
VEXnet Joystick and Cortex.

It does not matter which VEXnet
USB Key you insert into the Cortex
versus the VEXnet Joystick. Pairing
the Cortex and VEXnet Joystick
establishes the link; the VEXnet USB
Keys simply act as antennas for the

Note:

VEXnet Joystick Configuration in ROBOTC (cont.)

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems VEXnet Joystick Configuration • 6

7.	 Power the Cortex and Joystick ON. After roughly 15 seconds, the ROBOT and VEXnet LED’s
will blink green, indicating that the VEXnet communication link has been established.

7b. 	Turn the VEXnet Joystick ON

7a. 	Turn the Cortex ON

7c. 	Status LEDs
		 After roughly 15 seconds, the ROBOT and

VEXnet status LEDs will start quickly blinking
green. With the VEXnet link established, you
should power OFF your Cortex and VEXnet
Joystick to preserve battery.

VEXnet Joystick Configuration in ROBOTC (cont.)

End of Section: Creating a Wireless Link between the VEXnet Joystick and VEX Cortex
Your VEXnet Joystick and VEX Cortex can now communicate over the VEXnet USB Keys. Move
on to the next section to calibrate the values your VEXnet Joystick sends out.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems VEXnet Joystick Configuration • 7

VEXnet Joystick Configuration in ROBOTC (cont.)

Section 3: Calibrating the VEXnet Joystick Values

The VEXnet Remote Control includes two joysticks (each having an X and Y-axis), 8 buttons on
the front, and 4 additional trigger buttons on the top. Inside, there is also 3-Axis accelerometer,
capable of providing X-Y-Z acceleration values. Values from the joysticks, buttons, and
accelerometer are sent as a constant stream of information over VEXnet to the robot, enabling a
user to control the robot in real-time.

To ensure that the VEXnet Joystick sends out accurate joystick values, the joysticks must be
calibrated before their first use, and after any firmware updates are applied.

You will need:
•	 A VEXnet Joystick with batteries
•	 A VEX Cortex with robot battery
•	 A small Allen wrench (1/16” or smaller) or paper clip

This section contains the procedure for calibrating the VEXnet Remote Control joysticks.
Some steps are time-sensitive, so it’s recommended that you read through the instructions
once before following along.

1.	 Power on the VEXnet Joystick and VEX Cortex. Allow them to sync over VEXnet.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems VEXnet Joystick Configuration • 8

2.	 Press and hold the 6U trigger button.

3.	 While keeping the 6U trigger button pressed in, use your Allen wrench or paper clip to press in the
internal CONFIG button until the JOYSTICK LED blinks red and green.

2. 	Press and hold the 6U trigger button

	3a. Press and the CONFIG button
 While still pressing in the 6U trigger button,
 use an Allen wrench or paper clip to press
in
 the CONFIG button.

	3b. JOYSTICK LED
 Once the JOYSTICK LED begins to blink
 red and green, release both the 6U and
 CONFIG buttons.

VEXnet Joystick Configuration in ROBOTC (cont.)

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems VEXnet Joystick Configuration • 9

4.	 Move both joysticks through their full ranges of motion. When the remote control detects
that the joysticks have been fully rotated, the JOYSTICK LED stops blinking red and
green, and switches to a solid green.

There is a 10 second time limit to complete steps 4 and 5. If they are not completed
in time, the calibration process will timeout and the VEXnet LED will blink red briefly.

Important - Time Sensitive Instructions

	4a. Move the Joysticks
 Move the joysticks through their full ranges of
 motion - Up, Down, Left, Right, and in a circle.

	4b. JOYSTICK LED
 Once the remote control detects that the joysticks
 have been fully rotated, the JOYSTICK LED
switches
 to solid green, indicating that you can stop moving
 the joysticks.

VEXnet Joystick Configuration in ROBOTC (cont.)

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems VEXnet Joystick Configuration • 10

5.	 Press the 8U button to save the new calibration.

	5. Save
Press the 8U button to save the joystick calibration
on your remote control. The JOYSTICK LED will
blink green for a few seconds.

•	 If the calibration is not saved, the process will timeout after 10 seconds and
the VEXnet LED will blink red.

•	 To cancel a calibration, press the 7U button. The calibration process will be
discontinued and the VEXnet LED will blink red.

•	 Once the calibration is discontinued or saved, all of the remote control LEDs
will resume their normal function.

•	 The joysticks must be calibrated any time the firmware on the remote
control is downloaded.

Additional Information

VEXnet Joystick Configuration in ROBOTC (cont.)

End of Section: Calibrating the VEXnet Joystick Values
The joysticks on your VEXnet Joystick are now properly calibrated and ready to be used to remote
control your robot. If you had any issues during the process, troubleshooting tips can be found on
the following page.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems VEXnet Joystick Configuration • 11

Issue: Slow blinking green ROBOT light on the Cortex
Solution: Download the Cortex Master Firmware using ROBOTC.

Issue: Slow blinking ROBOT green light on the VEXnet Joystick
Solution: Push and hold CONFIG button for about 5 seconds, until the status
LEDs starts blinking green. Release it, wait for another 5 seconds, and then turn
the VEXnet Joystick OFF and then back ON. If that fails, download the VEXnet
Joystick Firmware using ROBOTC.

Issue: Yellow or red ROBOT light on the Cortex
Solution: Make sure you are using fully charged Robot battery.

Issue: Yellow or red ROBOT light on the VEXnet Joystick, even though they are
both green on the Cortex.
Solution: Power cycle both the VEXnet Joystick and CORTEX.

Troubleshooting

VEXnet Joystick Configuration in ROBOTC (cont.)

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems VEXnet Joystick Configuration • 12

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems SPA • 1

Sense Plan Act (SPA)

task main()
{
 bMotorReflected[port2]=1;
 while(true)
 {
 if(SensorValue(bumper)==0)
 {
 motor[port3]=127;
 motor[port2]=127;
 }

 else
 {
 motor[port3]=127;
 motor[port2]=-127;
 wait1Msec(1500);
 }
 }
}

Sense, Plan, Act was an early robot control procedure commonly abbreviated SPA. Today we
use its fundamental concepts to remind us of the three critical capabilities that every robot must
have in order to operate effectively:

SENSE:	 The robot needs the ability to sense important things about its environment, like the
presence of obstacles or navigation aids. What information does your robot need
about its surroundings, and how will it gather that information?

PLAN:	 The robot needs to take the sensed data and figure out how to respond appropriately
to it, based on a pre-existing strategy. Do you have a strategy? Does your program
determine the appropriate response, based on that strategy and the sensed data?

ACT:	 Finally, the robot must actually act to carry out the actions that the plan calls for. Have
you built your robot so that it can do what it needs to, physically? Does it
actually do it when told?

SENSE:	 The robot uses a Bumper Switch to sense whether it has collided with an object.

PLAN:	 The overall strategy for this robot is to run forward unless something is in its way,
which it will detect using the Bumper Switch. If the Bumper Switch is unpressed,
the motors will be run forward; if the Bumper Switch is pressed, the robot will turn
away from the obstacle. This is all captured in the program, which runs on the robot,
reading the sensor’s data and issuing the appropriate motor commands.

ACT:	 The robot acts by moving its motors in response to the given motor commands, which
are given in combinations that produce forward movement and turns as appropriate.

Where are S, P, and A in this program?

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Boolean Logic • 1

Boolean Logic

(Conditions)

ROBOTC control structures that make decisions about which pieces of code to run, such as while
loops and if-else conditional statements, always depend on a (condition) to make their decisions.
ROBOTC (conditions) are always Boolean statements. They are always either true or false at
any given moment. Try asking yourself the same question the robot does – for example, whether
the value of the Ultrasonic Sensor is greater than 45 or not. Pick any number you want for the
Ultrasonic Sensor value. The statement “the Ultrasonic Sensor’s value is greater than 45” will still
either be true, or be false.

Condition Ask yourself... Truth value
1==1 Is 1 equal to 1? True, always
0==1 Is 0 equal to 1? False, always

Condition Ask yourself... Truth value

SensorValue(sonarSensor) > 45 Is the value of the Ultrasonic
Sensor greater than 45?

True, if the current
value is more than
45 (for example, if

it is 50).

False, if the
current value is

not more than 45
(for example, if it

is 40).

Truth Values

Robots don’t like ambiguity when making decisions. They need to know, very clearly, which
choice to make under what circumstances. As a consequence, their decisions are always based
on the answers to questions which have only two possible answers: yes or no, true or false.
Statements that can be only true or false are called Boolean statements, and their true-or-false
value is called a truth value.

Fortunately, many kinds of questions can be phrased so that their answers are Boolean (true/
false). Technically, they must be phrased as statements, not questions. So, rather than asking
whether the sky is blue and getting an answer yes or no, you would state that “the sky is blue”
and then find out the truth value of that statement, true (it is blue) or false (it is not blue).

Note that the truth value of a statement is only applicable at the time it is checked. The sky could
be blue one minute and grey the next. But regardless of which it is, the statement “the sky is
blue” is either true or false at any specific time. The truth value of a statement does not depend
on when it is true or false, only whether it is true or false right now.

Some (conditions) have the additional benefit of ALWAYS being true, or ALWAYS being false.
These are used to implement some special things like “infinite” loops that will never end (because
the condition to make them end can never be reached!).

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Boolean Logic • 2

Boolean Logic

Comparison Operators

Comparisons (such as the comparison of the Ultrasonic sensor’s value against the number 45) are
at the core of the decision-making process. A well-formed comparison typically uses one of a very
specific set of operators, the “comparison operations” which generate a true or false result. Here
are some of the most common ones recognized by ROBOTC.

ROBOTC
Symbol Meaning Sample comparison Result

== “is equal to”
50 == 50 true
50 == 100 false
100 == 50 false

!= “is not equal
to”

50 != 50 false
50 != 100 true
100 != 50 true

<  “is less than”
50 < 50 false
50 < 100 true
100 < 50 false

<= “is less than
or equal to”

50 <= 50 true
50 <= 100 true
50 <= 0 false

>  “is greater
than”

50 > 50 false
50 > 100 false
100 > 50 true

>= Greater than
or equal to

50 >= 50 true
50 >= 100 false
100 >= 50 true

Evaluating Values

The “result” of a comparison is either true or false, but the robot takes it one step further. The
program will actually substitute the true or false value in, where the comparison used to be. Once
a comparison is made, it not only is true or false, it literally becomes true or false in the program.

if (50 > 45) ...

if (true) ...

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Boolean Logic • 3

Boolean Logic

Logical Operators

Some (conditions) need to take more than one thing into account. Maybe you only want the robot
to run if the traffic light is green AND there’s no truck stopped in front of it waiting to turn. Unlike
the comparison operators, which produce a truth value by comparing other types of values (is one
number equal to another?), the logical operators are used to combine multiple truth values into one
single truth value. The combined result can then be used as the (condition).

Example:
Suppose the value of a Light Sensor named sonarSensor is 50, and at the same time, the value of
a Bumper Switch named bumper is 1 (pressed).

The Boolean statement (sonarSensor > 45) && (bumper == 1) would be evaluated...v

ROBOTC
Symbol Meaning Sample comparison Result

&& “AND”

true && true true
true && false false
false && true false
false && false false

|| “OR”

true || true true
true || false true
false || true true
false || false false

(50 > 45) && (1 == 1)

true && true

true

Use in Control Structures

“Under the hood” of all the major decision-making control structures is a simple check for the
Boolean value of the (condition). The line if (SensorValue(bumper) == 1)... may read
easily as “if the bumper switch is pressed, do...”, but the robot is really looking for if(true) or
if(false). Whether the robot runs the “if true” part of the if-else structure or
the “else” part, depends solely on whether the (condition) boils down to true or false.

if (50 > 45) ...

if (true) ...

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Variables • 1

Variables

Variables are places to store values (such as sensor readings) for later use, or for use in
calculations. There are three main steps involved in using a variable:

task main()
{
 int speed;

 speed = 75;

 motor[port3] = speed;
 motor[port2] = speed;
 wait1Msec(2000);
}

Declaration
The variable is created by announcing its type,
followed by its name. Here, it is a variable
named speed that will store an integer.

1. Introduce (create or “declare”) the variable
2. Give (“assign”) the variable a value
3. Use the variable to access the stored value

Assignment
The variable is assigned a value. The variable
speed now contains the integer value 75.

Use
The variable can now “stand in” for any value of the appropriate
type, and will act as if its stored value were in its place.

Here, both motor commands expect integers for power settings,
so the int variable speed can stand in. The commands set their
respective motor powers to the value stored in speed, 75.

In the example above, the variable “speed” is used to store a number, and then retrieve and use
that value when it is called for later on. Specifically, it stores a number given by the programmer,
and retrieves it twice in the two different places that it is used, once for each of the motor
commands. This way both motors are set to the same value, but more interestingly, you would
only need to change one line of code to change both motor powers.

task main()
{
 int speed;

 speed = 50;

 motor[port3] = speed;
 motor[port2] = speed;
 wait1Msec(2000);
}

One line changed
The value assigned to speed is now 50 instead of 75.

Changed without being changed
No change was made to the program here, but
because these lines use the value contained in
the variable, both lines now tell their motors to
run at a power level of 50 instead of 75.

This example shows just one way in which variables can be used, as a convenience for
the programmer. With a robot, however, the ability to store sensor values (values that are
measured by the robot, rather than set by the programmer) adds invaluable new capabilities.
It gives the robot the ability to take measurements in one place and deliver them in another,
or even do its own calculations using stored values. The same basic rules are followed, but
the possibilities go far beyond just what you’ve seen so far!

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Variables • 2

Declaration Rules
In order to declare a variable, you must declare its type, followed by its name. Here are some
specifics about the rules governing each:

Proper Variable
Names

Improper Variable
Names

linecounter line counter
threshold threshold!
distance3 3distance

timecounter time1[T1]

Rules for Variable Names
• A variable name can not have spaces in it
• A variable name can not have symbols in it
• A variable name can not start with a number
• A variable name can not be the same as an 	 	
 existing reserved word

Data Type Description Example Code

Integer Positive and negative whole numbers, as
well as zero.

-35, -1, 0,
33, 100, 345 int

Floating Point
Decimal

Numeric values with decimal points
(even if the decimal part is zero).

-.123, 0.56, 3.0,
1000.07 float

Boolean True or False. Useful for expressing the
outcomes of comparisons. true, false bool

Rules for Variable Types
• You must choose a data type that is appropriate for the value you want to store

The following is a list of data types most commonly used in ROBOTC:

Variables

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Variables • 3

Assignment and Usage Rules
Assignment of values to variables is pretty straightforward, as is the use of a variable in a
command where you wish its value to be used.

Rules for Variable Usage
• “Use” a variable simply by putting its name where you want its value to be used
• The current value of the variable will be used every time the variable appears

Examples:
Statement Description

motorPower = 75; Stores the value 75 in the variable
“motorPower”

sonarVariable = SensorValue(sonarSensor);
Stores the current sensor reading
of the sensor “sonarSensor” in the

variable “sonarVariable”

sum = variable1 + variable2;

Adds the value in “variable1”
to the value in “variable2”, and
stores the result in the variable

“sum”

average = (variable1 + variable2)/2;

Adds the value in “variable1”
and the value in “variable2”,

then divides the result by 2, and
stores the final resulting value in

“average”

count = count + 1;

Adds 1 to the current value of
“count” and places the result back
into “count” (effectively, increases

the value in “count” by 1)

int zero = 0;

Creates the variable x with an
initial value of 0 (combination
declaration and assignment

statement)

Rules for Assignment

• Values are assigned using the assignment operator = (not ==)

• Assigning a value to a variable that already has a value in it will overwrite the old value 	
with the new one

• Math operators (+, -, *, /) can be used with assignment statements to perform calculations 	
 on the values before storing them

• A variable can appear in both the left and right hand sides of an assignment statement; 	
this simply means that its current value will be used in calculating the new value

• Assignment can be done in the same line that a variable is declared
 (e.g. int x = 0; will both create the variable x and put an initial value of 0 in it)

Variables

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Reserved Words • 1

Reserved Words

	motor[port3]= 127; //port3 - Full speed forward
	motor[port2]= -127; //port2 - Full speed reverse

	motor[port3]= 127; //port3 - Full speed forward
	motor[port2]= 127; //port2 - Full speed reverse

 bMotorReflected[port2]= 1; //Flip port2’s direction
 motor[port3]= 127; //port3 - Full speed forward
 motor[port2]= 127; //motorA - Full speed forward

Motors
Motor control and some fine-tuning commands.

motor[output] = power;
This turns the referenced VEX motor output either on or off and simultaneously sets its power
level. The VEX has 8 motor outputs: port1, port2... up to port8. The VEX supports
power levels from -127 (full reverse) to 127 (full forward). A power level of 0 will cause the motors to

bMotorReflected[output] = 1; (or 0;)
When set equal to one, this code reverses the rotation of the referenced motor. Once set, the
referenced motor will be reversed for the entire program (or until bMotorReflected[] is set equal
to zero).

This is useful when working with motors that are mounted in opposite directions, allowing the
programmer to use the same power level for each motor.

There are two settings: 0 is normal, and 1 is reverse. You can use “true” for 1 and “false” for 0.

Before:

After:

 motor[port3]= 127; //port3 - full speed forward
 wait1Msec(2000); //Wait 2 seconds
 motor[port3]= 0; //port3 - off

Timing

The VEX allows you to use Wait commands to insert delays into your program. It also supports
Timers, which work like stopwatches; they count time, and can be reset when you want to start
or restart tracking time elapsed.

wait1Msec(wait_time);
This code will cause the robot to wait a specified number of milliseconds before executing the
next instruction in a program. “wait_time” is an integer value (where 1 = 1/1000th of a second).
Maximum wait_time is 32768, or 32.768 seconds.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Reserved Words • 2

Reserved Words

 int x; //Integer variable x
 x=time1[T1]; //Assigns x=value of Timer 1 (1/1000 sec.)

 motor[port3]= 127; //port3 - full speed forward
 wait10Msec(200); //Wait 2 seconds
 motor[port3]= 0; //port3 - off

 int x; //Integer variable x
 x=time10[T1]; //Assigns x=value of Timer 1 (1/100 sec.)

wait10Msec(wait_time);
This code will cause the robot to wait a specified number of hundredths of seconds before
executing the next instruction in a program. “wait_time” is an integer value (where 1 = 1/100th of
a second). Maximum wait_time is 32768, or 327.68 seconds.

time1[timer]
This code returns the current value of the referenced timer as an integer. The resolution for
“time1” is in milliseconds (1 = 1/1000th of a second).

The maximum amount of time that can be referenced is 32.768 seconds (~1/2 minute)

The VEX has 4 internal timers: T1, T2, T3, and T4

time10[timer]
This code returns the current value of the referenced timer as an integer. The resolution for
“time10” is in hundredths of a second (1 = 1/100th of a second).

The maximum amount of time that can be referenced is 327.68 seconds (~5.5 minutes)

The VEX has 4 internal timers: T1, T2, T3, and T4

 int x; //Integer variable x
 x=time100[T1]; //assigns x=value of Timer 1 (1/10 sec.)

time100[timer]
This code returns the current value of the referenced timer as an integer. The resolution for
“time100” is in tenths of a second (1 = 1/10th of a second).

The maximum amount of time that can be referenced is 3276.8 seconds (~54 minutes)

The VEX has 4 internal timers: T1, T2, T3, and T4

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Reserved Words • 3

Reserved Words

	ClearTimer(T1); //Clear Timer #1

ClearTimer(timer);
This resets the referenced timer back to zero seconds.

The VEX has 4 internal timers: T1, T2, T3, and T4

if(SensorValue(in1) == 1) //If in1 (bumper) is pressed
{
 motor[port3] = 127; //Motor Port 3 full speed forward
}

SensorValue(sensor_input)
SensorValue is used to reference the integer value of the specified sensor port.
Values will correspond to the type of sensor set for that port.

The VEX has 16 analog/digital inputs: in1, in2... to in16

PlayTone(220, 500); //Plays a 220hz tone for 1/2 second

Sounds

The VEX can play sounds and tones using an external piezoelectric speaker attached to a motor
port.

PlayTone(frequency, duration);
This plays a sound from the VEX internal speaker at a specific frequency (1 = 1 hertz) for
a specific length (1 = 1/100th of a second).

Type of Sensor Digital/Analog? Range of Values
Touch Digital 0 or 1
Reflection (Ambient) Analog 0 to 1023
Rotation (Older
Encoder)

Digital 0 to 32676

Potentiometer Analog 0 to 1023
Line Follower (Infrared) Analog 0 to 1023
Sonar Digital -2, -1, and 1 to 253
Quadrature Encoder Digital -32678 to 32768
Digital In Digital 0 or 1

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Reserved Words • 4

Reserved Words

bVexAutonomousMode = false; //enable radio control
while(true)
{
 motor[port3] = vexRT[Ch3]; //right joystick, y-axis
 //controls the motor on port 3
 motor[port2] = vexRT[Ch2]; //left joystick, y-axis
 //controls the motor on port 2
}

Radio Control

ROBOTC allows you to control your robot using input from the Radio Control Transmitter.

bVexAutonomousMode
Set the value to either 0 for radio enabled or 1 for radio disabled (autonomous mode). You can
also use “true” for 1 and “false” for 0.

Control Port Joystick Channel Possible Values
Right Joystick, X-axis Ch1 -127 to 127
Right Joystick, Y-axis Ch2 -127 to 127
Left Joystick, Y-axis Ch3 -127 to 127
Left Joystick, X-axis Ch4 -127 to 127
Left Rear Buttons Ch5 -127, 0, or 127
Right Rear Buttons Ch6 -127, 0, or 127

Control Port Joystick Channel Possible Values
Right Joystick, X-axis Ch1Xmtr2 -127 to 127
Right Joystick, Y-axis Ch2Xmtr2 -127 to 127
Left Joystick, Y-axis Ch3Xmtr2 -127 to 127
Left Joystick, X-axis Ch4Xmtr2 -127 to 127
Left Rear Buttons Ch5Xmtr2 -127, 0, or 127
Right Rear Buttons Ch6Xmtr2 -127, 0, or 127

If the RF receiver is plugged into Rx 2, the following values apply:

vexRT[joystick_channel]
This command retrieves the value of the specified channel being transmitted.

If the RF receiver is plugged into Rx 1, the following values apply:

bVexAutonomousMode = 0; //enable radio control

bVexAutonomousMode = 1; //disable radio control

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Reserved Words • 5

Reserved Words

srand(16); //Assign 16 as the value of the seed

random(100); //Generates a number between 0 and 100

while(time1[T1]<5000)//While the timer is less than 5 sec...
{
	motor[port3]= 127;//...motor port3 runs at 100%
}

if(sensorValue(bumper) ==1)//the bumper is used as...
{ //...the condition
	motor[port3]= 0; //if it’s pressed port3 stops
}
else
{
 motor[port3]= 127; //if it’s not pressed port3 runs
}

Miscellaneous

Miscellaneous useful commands that are not part of the standard C language.

srand(seed);
Defines the integer value of the “seed” used in the random() command to generate a random
number. This command is optional when using the random() command, and will cause the same
sequence of numbers to be generated each time that the program is run.

random(value);
Generates random number between 0 and the number specified in its parenthesis.

Control Structures

Program control structures in ROBOTC enable a program to control its flow outside of the typical
top to bottom fashion.

task main(){}
Creates a task called “main” needed in every program. Task main is responsible for holding the
code to be executed within a program.

while(condition){}
Used to repeat a {section of code} while a certain (condition) remains true. An infinite while loop
can be created by ensuring that the condition is always true, e.g. “1==1” or “true”.

if(condition){}/else{}
With this command, the program will check the (condition) within the if statement’s parentheses
and then execute one of two sets of code. If the (condition) is true, the code inside the if state-
ment’s curly braces will be run. If the (condition) is false, the code inside the else statement’s curly
braces will be run instead. The else condition is not required when using an if statement.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Reserved Words • 6

Reserved Words

int x; //Declares the integer variable x
x = 765; //Stores 765 inside of x

Data Types

Different types of information require different types of variables to hold them.

int
This data type is used to store integer values ranging from -32768 to 32768.

The code above can also be written:

int x = 765; //Declares the integer variable x and...
				 //...initializes it to a value of 765

bool x; 	 //Declares the bool variable x
x = 0;	 //Sets x to 0

bool
This data type is used to store boolean values of either 1 (also true) or 0 (also false).

char x; 	 //Declares the char variable x
x = ‘J‘; //Stores the character J inside of x

char
This data type is used to store a single ASCII character, specified between a set of single quotes.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Main Title • 1

While Loops with Natural Language

	while(condition)
	{
	 // repeated-commands
	}

There are three main parts to every while loop.

Part 1. The keyword “while”.

The condition is true as long as
1 is equal to 1, which is always.

task main()
{			
	while(1 == 1)
 {	
 startMotor(port2, 63);
 wait(5.0);

 startMotor(port2, -63);
 wait(5.0);
 }
}

Below is an example of a program using an infinite While Loop.

A while loop is a structure within ROBOTC which allows a section of code to be repeated
as long as a certain condition remains true.

While the condition is true, the
port2 motor will turn forward
for 5 seconds, then in reverse
for 5 seconds.

Result: The port2 motor will turn
back and forth, forever.

while
Every while loop begins with the keyword “while”.

	while(condition)
	{
	 // repeated-commands
	}

Part 2. The condition.

(condition)
The condition controls how long or how many times a while loop
repeats. While the condition is true, the while loop repeats; when
the condition is false, the while loop ends and the robot moves
on in the program. The condition is checked every time the loop
repeats, before the commands between the curly braces are
run.

	while(condition)
	{
	 // repeated-commands
	}

Part 3. The commands to be repeated, or “looped”.

Repeated commands
Commands placed between the curly braces will repeat
while the (condition) is true when the program checks at
the beginning of each pass through the loop.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Main Title • 2

#pragma config(Sensor, dgtl1, Estop, sensorTouch)
#pragma config(Sensor, dgtl2, controlBtn, sensorTouch)
#pragma config(Sensor, dgtl3, LED, sensorDigitalOut)

task main()
{		
	while(SensorValue[Estop] == 0)
 {	
 if(SensorValue[controlBtn] == 1)
 {
 turnLEDOn(LED);
 }
 else
 {
 turnLEDOff(LED);
 }
 }
}

Checks if count is “less than” 4.

task main()
{		
 int count = 0;

	while(count < 4)
 {	
 startMotor(port2, 63);
 wait(5.0);

 startMotor(port2, -63);
 wait(5.0);

 count = count + 1;
 }
}

Below is an example of a program using a counter-controlled While Loop.

Creates an integer variable named
“count” and gives it an initial value of 0.

Adds 1 to count every time the loop runs.

Result: The loop repeats 4 times, caus-
ing the port2 motor to turn back and
forth, four times.

Checks if the “Estop” touch sensor
is equal to 0 (unpressed).

Below is an example of a program using a sensor-controlled While Loop.

If the “controlBtn” is pressed, turn the
LED on; if it’s not, turn the LED off.

Result: The loop repeats continuously,
allowing the LED to be turned on while
the “controlBtn” is pressed, and off while
“controlBtn” is released. The loop will
stop as soon as the “Estop” touch sensor
is pressed.

While Loops with Natural Language

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems If Statements •

if Statements with Natural Language

if(condition)
{
		 // true-commands
}

Pseudocode of an if Statment:

An if Statement allows your robot to make a decision. When your robot reaches an if Statment in
the program, it evaluates the condition contained between the parenthesis. If the condition is true,
any commands between the braces are run. If the condition is false, those same commands are

(true) commands
Commands placed here will run
if the (condition) is true.

(condition)
Either true or false

Example program containing two if Statements:

 task main()
{
 while(true)
	{
		 if(SensorValue(bumper) == 0)
 	 {
	 	 startMotor(port3, 63);
 	 }

 	 if(SensorValue(bumper) == 1)
 	 {
			 stopMotor(port3);		
 }
	}
}

This program uses a Bumper Switch and two if Statements to control when the port3 motor moves.
The first if Statement sets the motor to half power forward if the Bumper Switch has not been
pressed, while the second turns the motor off if it has been pressed. Continually repeating these
two behaviors within the while loop causes the motor to spin forward while the Bumper Switch is
released, and to remain stopped for as long as it is pressed.

(true) commands
Commands here run if
the (condition) is true.

 (condition)
true if the sensor is unpressed; false otherwise

(true) commands
Commands here run if
the (condition) is true.

(condition)
true if the sensor is pressed; false otherwise

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems If Statements •

if-else Statements with Natural Language

if(condition)
{
		 // true-commands
}
else
{
		 // false-commands
}

Pseudocode of an if-else Statment:

 task main()
{
	while(true)
	{
		 if(SensorValue(sonarSensor)>25)
 	 {
	 	 startMotor(port3, 63);
 	 }

 	 else
 	 {
			 stopMotor(port3);		
 }
	}
}

The if-else Statement is an expansion of the basic if Statement. The “if” section still checks the
condition and runs the appropriate commands when it evaluates to true, but using the “else” allows
for specific code to be run only when the condition is false.

Example program containing an if-else Statement:

This if-else Statement tells the robot to run port3 at half power if the nearest object the Ultrasonic
Rangefinder detects is more than 25 centimeters away. If the Ultrasonic Rangefinder detects an
object closer than 25 centimeters, then the “else” portion of the code will be run and the motor on
port3 will stop moving. The outer while(true) loop makes the if-else statement repeat forever.

(true) commands
Commands placed here will run
if the (condition) is true.

(false) commands
Commands placed here will run
if the (condition) is false.

(condition)
Either true or false.

(true) commands
Commands here run if
the (condition) is true.

(false) commands
Commands here run if
the (condition) is false.

(condition)
true if the sensor reads over 25; false
otherwise

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems If Statements •

Embedded if/if-else Statements
with Natural Language

if(condition)
{
 if(condition)
 {
	 	// true-commands
 }
 else
 {
		 // false-commands
 }
}

Pseudocode of an embedded if Statment:

Sometimes, especially with more complex tasks, your robot will have to make multiple consecutive
decisions before performing a behavior. This can be accomplished by embedding, or placing, if
Statments within other if Statements.

(condition)
Either true or false

(true) commands
Commands placed here will run
if the (condition) is true.

(false) commands
Commands placed here will run
if the (condition) is false.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Variables • 1

task main()
{
 int speed;

 speed = 50;

 startMotor(port3,speed);
 startMotor(port2,speed);
 wait1(2.0);
}

Variables with Natural Language

Variables are places to store values (such as sensor readings) for later use, or for use in
calculations. There are three main steps involved in using a variable:

task main()
{
 int speed;

 speed = 75;

 startMotor(port3,speed);
 startMotor(port2,speed);
 wait1(2.0);
}

Declaration
The variable is created by announcing its type,
followed by its name. Here, it is a variable
named speed that will store an integer.

1. Introduce (create or “declare”) the variable
2. Give (“assign”) the variable a value
3. Use the variable to access the stored value

Assignment
The variable is assigned a value. The variable
speed now contains the integer value 75.

Use
The variable can now “stand in” for any value of the appropriate
type, and will act as if its stored value were in its place.

Here, both startMotor commands expect integers for power
settings, so the int variable speed can stand in. The commands
set their respective motor powers to the value stored in speed,
75.

In the example above, the variable “speed” is used to store a number, and then retrieve and use
that value when it is called for later on. Specifically, it stores a number given by the programmer,
and retrieves it twice in the two different places that it is used, once for each of the startMotor
commands. This way both motors are set to the same value, but more interestingly, you would
only need to change one line of code to change both motor powers.

One line changed
The value assigned to speed is now 50 instead of 75.

Changed without being changed
No change was made to the program here, but
because these lines use the value contained in
the variable, both lines now tell their motors to
run at a power level of 50 instead of 75.

This example shows just one way in which variables can be used, as a convenience for
the programmer. With a robot, however, the ability to store sensor values (values that are
measured by the robot, rather than set by the programmer) adds invaluable new capabilities.
It gives the robot the ability to take measurements in one place and deliver them in another,
or even do its own calculations using stored values. The same basic rules are followed, but
the possibilities go far beyond just what you’ve seen so far!

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Variables • 2

Declaration Rules
In order to declare a variable, you must declare its type, followed by its name. Here are some
specifics about the rules governing each:

Proper Variable
Names

Improper Variable
Names

linecounter line counter
threshold threshold!
distance3 3distance

timecounter time1[T1]

Rules for Variable Names
• A variable name can not have spaces in it
• A variable name can not have symbols in it
• A variable name can not start with a number
• A variable name can not be the same as an 	 	
 existing reserved word

Data Type Description Example Values Code

Integer Positive and negative whole numbers, as
well as zero.

-35, -1, 0,
33, 100, 345 int

Floating Point
Decimal

Numeric values with decimal points
(even if the decimal part is zero).

-.123, 0.56, 3.0,
1000.07 float

Boolean True or False. Useful for expressing the
outcomes of comparisons. true, false bool

Character Individual characters, such as letters and
numbers, placed in single quotes. ‘n’, ‘5’, ‘Z’ char

String
Multiple characters in a row, can
optionally form sentences and words,
placed in double quotes.

“Hello World!”,
“asdf”, “Zebra
Number 56”

string

Rules for Variable Types
• You must choose a data type that is appropriate for the value you want to store

The following is a list of data types most commonly used in ROBOTC:

Variables with Natural Language

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Variables • 3

Assignment and Usage Rules
Assignment of values to variables is pretty straightforward, as is the use of a variable in a
command where you wish its value to be used.

Rules for Variable Usage
• “Use” a variable simply by putting its name where you want its value to be used
• The current value of the variable will be used every time the variable appears

Examples:
Statement Description

motorPower = 75; Stores the value 75 in the variable
“motorPower”

sonarVariable = SensorValue(sonarSensor);
Stores the current sensor reading
of the sensor “sonarSensor” in the

variable “sonarVariable”

sum = variable1 + variable2;

Adds the value in “variable1”
to the value in “variable2”, and
stores the result in the variable

“sum”

average = (variable1 + variable2)/2;

Adds the value in “variable1”
and the value in “variable2”,

then divides the result by 2, and
stores the final resulting value in

“average”

count = count + 1;

Adds 1 to the current value of
“count” and places the result back
into “count” (effectively, increases

the value in “count” by 1)

int zero = 0;

Creates the variable x with an
initial value of 0 (combination
declaration and assignment

statement)

Rules for Assignment

• Values are assigned using the assignment operator = (not ==)

• Assigning a value to a variable that already has a value in it will overwrite the old value 	
with the new one

• Math operators (+, -, *, /) can be used with assignment statements to perform calculations 	
 on the values before storing them

• A variable can appear in both the left and right hand sides of an assignment statement; 	
this simply means that its current value will be used in calculating the new value

• Assignment can be done in the same line that a variable is declared
 (e.g. int x = 0; will both create the variable x and put an initial value of 0 in it)

Variables with Natural Language

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Thresholds • 1

If you look at this image, it shows an VEX using an Ultrasonic Rangefinder. The threshold in
this case is 25 centimeters. We can create behaviors that tell the robot to go forward until the
Ultrasonic Rangefinder detects something closer than 25 centimeters.

The threshold is just used to determine at which point the robot should be peforming a
different behavior.

Calculated Thresholds

Some sensors, like the Ultrasonic Rangefinder and Potentiometer, provide the same set of
values no matter what environment the robot is in; for the most part, their thresholds can simply
be chosen based on their application. Other sensors, like the Light Sensor and Line Tracking
Sensor, will provide very different values based on the environment they’re in, due to factors
such as the amount of ambient light or the type of surface the robot is tracking. Sensors that
provide a different range of values based on their environment need to have their thresholds
calculated.

For example, to find a dark line on a light surface, you must first calculate a threshold to
distinguish light from dark. One recommended method is:

1. Meausre the Line Follower Sensor value of the light surface. (For more information on finding
 sensor values, reference the ROBOTC Debugger document.)

2. Measure the Line Follower Sensor value of the dark surface

3. Add the two light sensor readings together

4. Divide by two to find the average, and use it as your threshold

In equation form:

Thresholds are values that set a cutoff in a range of values, so that even if there are many
possibilities, the value eventually falls above the threshold, or below the threshold. Using
thresholds allows you to perform certain behaviors depending on where a certain value
(usually a sensor value) falls in relation to the threshold.

Threshold = 25 cm

Near Far

light value + dark value

2
= threshold

startMotor(leftMotor, 63);
untilSonarLessThan(25);

Thresholds with Natural Language

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Timers • 1

Timers are very useful for performing a more complex behavior for a certain period of time. Wait
states (from wait1Msec) don’t let the robot execute commands during the waiting period, which
is fine for simple behaviors like moving forward. If calculations or other actions need to occur
during the timed period, as with the line tracking behavior below, a Timer must be used.

Timers

task main()
{
	bMotorReflected[port2]=1;
	ClearTimer(T1);
	while(time1[T1] < 3000)
	{
 		 if(SensorValue(lineFollower) < 45)
		 {
			 motor[port3]=63;
 			 motor[port2]=0;
		 }
		 else
		 {
			 motor[port3] = 0;
			 motor[port2] = 63;
		 }
	}
}

First, you must reset and start a timer by using the ClearTimer() command.
Here’s how the command is set up:
ClearTimer(Timer_number);

The VEX has 4 built in timers: T1, T2, T3, and T4.
So if you wanted to reset and start Timer T1, you would type:

ClearTimer(T1);

Then, you can retrieve the value of the timer by using time1[T1], time10[T1], or time100[T1]
depending on whether you want the output to be in 1, 10, or 100 millisecond values.
In the example above, you should see in the condition that we used time1[T1]. The robot will track
a line until the value of the timer is less than 3 seconds. The program ends after 3 seconds.

Timer in the (condition)
This loop will run “while the
timer’s value is less than 3
seconds”, i.e. less than 3
seconds have passed since
the reset. The line tracking
behavior inside the {body}
will continue for 3 seconds.

Clear the Timer
Clearing the timer resets
and starts the timer. You
can choose to reset any
of the timers, from T1
to T4.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Behaviors • 1

Behaviors

Basic Behaviors
Example: Turn on Motor Port 3 at half power

At the most basic level, everything in a program
must be broken down into tiny behaviors that
your robot can understand and perform directly.
In ROBOTC, these are behaviors the size of
single statements, like turning on a single motor,
or resetting a timer.

Simple Behaviors
Example: Move forward for 2 seconds

Simple behaviors are small, bite-size behaviors
that allow your robot to perform a simple, yet

A behavior is anything your robot does: turning on a single motor is a behavior, moving
forward is a behavior, tracking a line is a behavior, navigating a maze is a behavior. There are
three main types of behaviors that we are concerned with: basic behaviors, simple behaviors,
and complex behaviors.

significant task, like moving forward for a certain amount of time. These are perhaps the most
useful behaviors to think about, because they are big enough that you can describe useful
actions with them, but small enough that you can program them easily from basic ROBOTC
commands.

Complex Behaviors
Example: Follow a defined path through an entire maze

These are behaviors at the highest levels, such as navigating an entire maze. Though they
may seem complicated, one nice property of complex behaviors is that they are always
composed of smaller behaviors. If you observe a complex behavior, you can always break it
down into smaller and smaller behaviors until you eventually reach something you recognize.

task main()
{
		 bMotorReflected[port2] = 1;

		 motor[port3] = 63;
		 motor[port2] = 63;
		 wait1Msec(2000);

		 motor[port3] = -63;
		 motor[port2] = 63;
		 wait1Msec(400);

		 motor[port3] = 63;
		 motor[port2] = 63;
		 wait1Msec(2000);
}

Complex
behavior
This code
makes the robot
move around a

Simple
behavior
This code
makes the
robot go
forward for
2 seconds at
half power.

Basic
behavior
This code
turns the left
motor on at
half power.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Behaviors • 2

Behaviors

Sometimes it can be hard to tell whether a behavior is “simple” or “complex”. Some programs
are so complex they need multiple layers of simple behaviors before they reach the basic
ones!

“Basic,” “Simple,” and “Complex” are categories of behaviors which are meant to help you
think about the structure of programs. They are points of reference in the world of behaviors.
Use these distinctions to help you, but don’t worry if your “complex” behavior suddenly
becomes a “simple” part of your next program... just pick the point of reference

Composition and Analysis

Perhaps the most important idea in behaviors is that they can be built up or broken down
into other behaviors. Complex behaviors, like going through a maze, can always be broken
down into smaller, simpler behaviors. These in turn can be broken down further and further
until you reach simple or basic behaviors that you recognize and can program.

By looking back at the path of behaviors you broke down, you can also see how the smaller
behaviors should be programmed so that they combine back together, and produce the
larger behavior. In this way, analyzing a complex behavior maps out the pieces that need to
be programmed, then allows you to program them, and put them together to build the final
product.

Go forward for 3 seconds

Turn on left motorTurn on right motorWait 3 seconds
Turn off left motorTurn off right motor

Follow the path to reach the goal

Go forward 3 secondsTurn left 90º
Go forward 5 secondsTurn right 90º
Go forward 2 secondsTurn right 90º
Go forward 2 seconds

Turn left 90º

Reverse left motorTurn on right motorWait 0.8 secondsTurn off left motorTurn off right motor

Go forward for 5 seconds

Turn on left motorTurn on right motorWait 5 seconds

1. Turn on left motor

2. Turn on right motor

3. Wait 3 seconds

4. Turn off left motor

5. Turn off right motor

6. Reverse left motor

7. Turn on right motor

8. Wait 0.8 seconds

9. Turn off left motor

10. Turn off right motor

11. Turn on left motor

12. Turn on right motor

13. Wait 5 seconds
...

Large behavior Smaller behaviors ROBOTC-ready behaviors

Step by step
1. Start with a large-

scale behavior that
solves the problem.

2. Break it down into
smaller pieces. Then
break the smaller
pieces down as well.

3. Repeat until you
have behaviors that
are small enough
for ROBOTC to
understand.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Functions • 1

void rotateArm()
{
 startMotor(armMotor,63);
 wait(3.25);
 stopMotor(armMotor);
}

task main()
{
		 rotateArm();
}

A function is a group of statements that are run as a single unit when the function is called from
another location, such as task main(). Commonly, each function will represent a specific behavior
in the program.

Functions offer a number of distinct advantages over basic step-by-step coding.

•	 They save time and space by allowing common behaviors to be written as functions, and then 	
	 run together as a single statement (rather than re-typing all the individual commands).

•	 Separating behaviors into different functions allows your code to follow your planning more 	
	 easily (one function per behavior or even sub-behavior).

•	 Through the use of parameters, multiple related (but not identical) tasks can be handled with
	 a single, intuitive function.

1. Declare Your Function
Declare the function by using the word “void”,
followed by the name you wish to give to the
function. It’s helpful to give the function a
name that reflects the behavior it will perform.

Within the function’s {curly braces}, write the
commands exactly as you would normally.
When the function is called, it will run the lines
between its braces in order, just like task main
does with the code between its own braces.

2. Call Your Function
Once your declare your function, it acts like a
new command in the language of ROBOTC.
To run the function, simply “call” it by name
– remember that its name includes the
parentheses – followed by a semicolon.

Using Functions

Functions must be created and then run separately. A function is created by “declaring” it,
and run by “calling” it.

Functions with Natural Language

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Functions • 2

void rotateArm(float time)
{
 startMotor(armMotor,63);
 wait(time);
 stopMotor(armMotor);
}

task main()
{
		 rotateArm(3.25);
}

void rotateArm(float time)
{
 startMotor(armMotor,63);
 wait(time);
 stopMotor(armMotor);
}

task main()
{
		 rotateArm(3.25);
}

Advanced Functions
Parameters

Parameters are a way of passing information into a function, allowing the function to run its
commands differently, depending on the values it is given. It may help to think of the parameters
as placeholders – all parameters must be filled in with real values when the function is called, so
in the places where a parameter appears, it will simply be replaced by its given value.

1. Declare parameter
A parameter is declared in the same way
that a variable is (type then name) inside the
parentheses following the function name.

2. Use parameter
The parameter value behaves like a
“placeholder”. Whatever value is provided
for the parameter when the function is called
will appear here.

3. Call function with parameter
When the function is called, a value must be
provided within the parentheses to take the
place of the parameter inside the function.

startMotor(armMotor,63);
wait(3.25);
stopMotor(armMotor);

Substitution
The arrows in the illustration to the right show
the general “path” of the value from the place
where it is provided in the function call, to
where its value is substituted into the function.

The function will run as if the code read as it
does in the bottom box.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Functions • 3

int squareOf(int t)
{
		 int sq;
		 sq = t * t;
		 return sq;
}

task main()
{
 startMotor(rightMotor,63);
 wait(squareOf(100));
 stopMotor(rightMotor);
}

Advanced Functions
Return Values

Not all functions are declared “void”. Sometimes, you may wish to capture a mathematical
computation in a function, for instance, or perform some other task that requires you to get
information back out of the function at the end. The function will “return” a value, causing it to
behave as if the function call itself were a value in the line that called it.

int squareOf(int t)
{
		 int sq;
		 sq = t * t;
		 return sq;
}

task main()
{
 startMotor(rightMotor,63);
 wait(squareOf(100));
 stopMotor(rightMotor);
}

1. Declare return type
Because the function will give a value back
at the end, it must be declared with a type
other than void, indicating what type of value
it will give.

2. Return value
The function must “return” a value. In
this case, it is returning the result of a
computation, the square of the parameter.

3. Function call becomes a value
The function call itself becomes a value to
the part of the program that calls it. Here,
it is acting as an integer value for the wait
command.

	 wait(10000);

Substitution
The arrows in the illustration to the right show
the general “path” of the value as it is returned
and goes back into the main function.

The parameter 100 is used (as t in the
function) to calculate the value, but is not
shown in the arrows.

The function will run as if the code read as it
does in the bottom box.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Switch Case • 1

The switch-case command is a decision-making statement which chooses commands to run
from a list of separate “cases”. A single “switch” value is selected and evaluated, and different
sets of code are run based on which “case” the value matches.

Switch Case

switch(switch-value)
{
 case 1st-value:
 // match-1st-commands
 break;

 case 2nd-value:
 // match-2nd-commands
 break;

 default:
 // default-commands
}

Below is the pseudocode outline of a switch-case Statement.

case value
A possible match for the switch value. If this value matches
the switch value, the code immediately following it runs.

switch value
The value which be checked for a match with any cases.

break; command
Marks the end of each case’s command statements.

default case
If the switch value does not match any of the given case
values, the “default” case will run.

case commands
The commands that run if this case successfully matched

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Switch Case • 2

Switch Case

task main()
{
	bMotorReflected[port2]=1;
	int turnVar=0;

	while(true)
	{
	 if(SensorValue(touch1)==1)
		 turnVar=1;

	 if(SensorValue(touch2)==1)
	 turnVar=2;

	 switch (turnVar)
 {
 case 1:
 motor[port3]=-127;
 motor[port2]=127;
 turnVar=0;
 break;

 case 2:
 motor[port3]=127;
 motor[port2]=-127;
 turnVar=0;
 break;

 default:
 motor[port3]=127;
 motor[port2]=127;
 }
 }
}

The touch sensors are used to set the value of turnVar in the program below. The switch-case
statement is then used to determine what to do, based on its value. No sensors pressed will
leave turnVar with a value of 0, and the robot will run the “default” case and go straight. Pressing
touch1 will give turnVar a value of 1, and make case 1 run (left turn). Pressing touch2 makes
turnVar 2, which makes case 2 (right turn) run. Both turns reset turnVar to 0 before ending, to
allow fresh input on the next pass of the loop.

Switch statement
The “switch” line designates the value that will
be evaluated to see if it matches any of the case

Case statement
The first line of a case includes the word “case” and
a value. If the value of the “switch” variable (turnVar)
matches this case value (1), the code following the
“case” line will run.

Commands
These commands belong to the case “1”, and will
run if the value of the “switch” variable (turnVar) is
equal to 1.

Break statement
Each “case” ends with the command break;

Default case statement
If the “switch” value above did not match any of the
cases presented by the time it reaches this point,
the “default” case will run.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Random Numbers • 1

Sometimes a behavior will call for a robot to use a random number in one of its measurements.
This may seem strange, but randomness can actually be helpful to a robot in avoiding patterns of
movement that would otherwise get it “stuck”.

task main()
{
 bMotorReflected[port2]=1;
 motor[port3]=127;
 motor[port2]=127;
 wait1Msec(random(5000));
}

Wait for a random time
The number of milliseconds
that the wait1Msec command
will wait for will be a random
number between 0 and 5000.

This program runs the robot
forward for a random amount
of time up to 5 seconds.

Using Random Numbers

Random numbers is pretty straightforward. Wherever you want the random number to appear,
simply add the code random(maxNumber). Each time the line is run, a random (whole) number
between 0 and the number you entered will fill in the spot where the random() command is.

4000 + random(1000) Minimum value (as shown: 4000-5000)
Adding the random value “on top of” a
base number lets you get random numbers
between a minimum (the base number) and
a maximum (base+maximum random) value.

Using Other Numbers

If you need something other than whole numbers between zero and something, you may
need to be a little creative...

random(100)/100 Percent (as shown: 0-100% in 1% increments)
Dividing your random value by its own maximum
value normalizes the value so that it always falls
between 0 and 1.

srand(123);
wait1Msec(random(5000));

Set random seed
The srand command sets the random
number seed for this robot. Run with the
same seed, “random” numbers will always be
generated in the same sequence.

Seeds

Computers can’t be truly random. Instead, they try to use a hard-to-predict series of numbers
based off a “seed” value. Under certain circumstances, you may want to set the seed

Random Numbers

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Pseudo Code & Flow Charts• 1

Pseudocode is a shorthand notation for programming which uses a combination of informal
programming structures and verbal descriptions of code. Emphasis is placed on expressing
the behavior or outcome of each portion of code rather than on strictly correct syntax (it does
still need to be reasonable, though).

In general, pseudocode is used to outline a program before translating it into proper syntax.
This helps in the initial planning of a program, by creating the logical framework and
sequence of the code. An additional benefit is that because pseudocode does not need
to use a specific syntax, it can be translated into different programming languages and is
therefore somewhat universal. It captures the logic and flow of a solution without the bulk of
strict syntax rules.

Below is some pseudocode written for a program which controls a motor and an LED as
long as a touch sensor is not pressed. A motor turns on and an LED turns off if no object is
deteced within 20cm of a sonar sensor; the motor turns off and an LED turns on if an object
is detected within 20 cm.

Pseudocode & Flow Charts

task main()
{
 while (touch sensor is not pressed)
 {
		 if(sonar detects object > 20cm away)
		 {
		 Right Motor runs forward
		 Red LED turns off
		 }
 else
 {
 Right Motor stops
 Red LED turns on
 }
 }
}

Some intact syntax
The use of a while loop
in the pseudocode is fitting
because the way we read a
while loop is very similar to
the manner in which it
is used in the program.

This pseudocode example includes elements of both programming language, and the English
language. Curly braces are used as a visual aid for where portions of code need to be placed
when they are finally written out in full and proper syntax.

Descriptions
There are no actual motor
commands in this section of
the code, but the pseudocode
suggests where the
commands belong and what
they need
to accomplish.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Pseudo Code & Flow Charts• 2

Pseudocode & Flow Charts
Flow Charts are a visual representation of program flow. A flow chart normally uses a
combination of blocks and arrows to represent actions and sequence. Blocks typically
represent actions. The order in which actions occur is shown using arrows that point from
statement to statement. Sometimes a block will have multiple arrows coming out of it,
representing a step where a decision must be made about which path to follow.

Decision

Action

Start and End symbols are represented as rounded rectangles,
usually containing the word “Start” or “End”, but can be more
specific such as “Power Robot Off” or “Stop All Motors”.

Actions are represented as rectangles and act as basic
commands. Examples: “wait 1 second”; “increment LineCount
by 1”; or “motors full ahead”.

Decision blocks are represented as diamonds. These typically
contain Yes/No questions. Decision blocks have two or
more arrows coming out of them, representing the different
paths that can be followed, depending on the outcome of the
decision. The arrows should always be labeled accordingly.

To the right is the flow chart of a program
which instructs a robot to run the right motor
forward as long as its touch sensor is not
pressed. When the touch sensor is pressed
the motor stops and the program ends.

To read the flow chart:

•	 Start at the “Start” block, and follow its
arrow down to the “Decision” block.

•	 The decision block checks the status of
the touch sensor against two possible
outcomes: the touch sensor is either
pressed or not pressed.

•	 If the touch sensor is not pressed, the
program follows the “No” arrow to the
action block on the right, which tells the
right motor to run forward. The arrow
leading out of that block points back
up and around, and ends back at the
Decision block. This forms a loop!

•	 The loop may end up repeating many
times, as long as the Touch Sensor
remains unpressed.

•	 If the touch sensor is pressed, the
program follows the “Yes” arrow and
stops the motors, then ends the program.

Start

Is the Touch
Sensor

pressed?

End

Run the Right
Motor

Stop
Motor

No

Start/Stop

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Program Design • 1

Program Design

The steps below should be documented in your engineering notebook . Some of the information will then be
transferred to the PLTW ROBOTC program template.
1. Describe the task or overall goal that your program will accomplish. This may be described as one or more
complex behaviors.

Example: A fan will run until someone needs it to stop. There
will be a warning light as a safety device before the fan turns
on and another light to indicate that the fan has stopped.
Note: This text will be used for the Task Description in the
PLTW ROBOTC program template

Creating Pseudocode
As you begin to break down your behaviors into individual actions
do not worry about syntax or which commands will be used with
ROBOTC. Simply describe them in short phrases such turn a motor
on for three seconds or follow a line until running into a wall.
2. For each complex behavior break it down into Simple Behaviors
line by line in the order that each should happen. Try to describe
actions and what prompts each action to continue, start, stop, etc.

Example:
A warning light comes on before the fan starts for three
seconds
The fan turns on and runs until a button is pressed
A different light turns for three seconds before the program
stops

3. For each simple behavior, break it down further to Basic Behaviors. Try to think in terms of what each
input and output component will be on your device.

Example:
Program begins
Light 1 (LED 1) turns on
for three seconds
Fan (Motor 1) turns on
Until a button (bumper switch)is pressed
Light 2 (LED 2) turns on
for 3 seconds

Program ends
Note: This text will be used for the Pseudocode in the PLTW ROBOTC program template

Planning your program may occur after you have sketched or built your physical device. It may also
occur before or at the same time depending on the your challenge. Regardless it is good practice to
do some planning for your program before writing code. This document outlines a strategy for a simple
example to show the process. Please review the reference Behaviors, to familiarize yourself with basic,
simple, and complex behaviors.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Program Design • 2

Program Design Identify Inputs and Outputs

4. Now that you know what inputs and ouputs you will need, identify which ports each will be plugged into
on the Cortex. Pay attention which sensors are analog and which are digital. Below is a sketch of a possible
configuration for the example on the previous page.

Example:

LED 1
LED 2

Motor (fan)

Bumper Switch

Note: The last page of this document contains a clean image of the Cortex that you can label,
then cutout and attach in your engineering notebook for your own projects.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Program Design • 3

Program Design PLTW ROBOTC Program Template

Note: Be sure the Cortex you are using has been updated with the Master CPU and ROBOTC Firmware.
Refer to the reference Firmware Over USB to acquire detailed instruction for this procedure.

5. Open ROBOTC and open the Sample Program PLTWTemplate.
6. Use your initial description (Complex Behaviors)of your overall goal for the program for the Task
Description.
7. Copy your final pseudocode (Basic Behaviors) for the Pseudocode section of the PLTW ROBOTC program
template.
8. It is recommended that you include your pseudocode mostly in tact as comments beside programming
commands.

Example:

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Program Design • 4

Program Design PLTW ROBOTC Program Template Cont.

9. Identify all inputs and outputs in the Motors and Sensors Setup window.

10. Use the Debugger to confirm that all inputs and outputs are working as expected. Refer to the reference
Debugger to learn more about these functions.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Program Design • 5

11. Code and test small behaviors or sets of behaviors individually and edit / add comments as you build your
code.

12. Continue programming and testing one behavior at a time. To test individual behaviors as you go
temporarily turn sections of code into comments using /* followed by */.

Program Design PLTW ROBOTC Program Template Cont.

Remember many basic behaviors generally come together to create a complex behavior . You can
solve simple and basic behaviors one at a time, and troubleshoot them as they come together to
form a complex behavior.

Test and debug the combined program. Make sure your behavior functions as intended within the
program. Many times, you will need to make adjustments to compensate for orientation, momentum,
or other unforeseen factors as they begin to work together

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Program Design • 6

ROBOTC Natural Language - Cortex Quick Reference:

ROBOTC Natural Language - Cortex Quick Guide • 1© 2010 Carnegie Mellon Robotics Academy / For use with VEX Robotics Systems

Set Servo
Set a servo to a desired position.
Default servo and position: port6, 0.

setServo(); setServo(port7, 95);

Start Motor
Set a specific motor to a speed.
Default motor and speed: port6, 95.

startMotor();
wait();
stopMotor();

startMotor(port8, -32);
wait(0.5);
stopMotor(port8);

Stop Motor
Stop a specific motor.
Default motor: port6.

startMotor();
wait();
stopMotor();

startMotor(port8, -32);
wait(0.5);
stopMotor(port8);

Wait
Wait an amount of time measured in seconds.
Default time: 1.0.

startMotor();
wait();
stop();

startMotor(port8, 63);
wait(2.7);
stop();

Wait in Milliseconds
Wait an amount of time measured in
milliseconds.
Default time: 1000.

startMotor();
waitInMilliseconds();
stop();

startMotor(port8, 63);
waitInMilliseconds(2700);
stop();

Until Touch
The robot waits for the Touch Sensor to be
pressed.
Default sensor port: dgtl6.

startMotor();
untilTouch();
stop();

startMotor(port8, 63);
untilTouch(dgtl10);
stop();

Until Release
The robot waits for the Touch Sensor to be
released.
Default sensor port: dgtl6.

startMotor();
untilRelease();
stop();

startMotor(port8, 63);
untilRelease(dgtl10);
stop();

Until Bump
The robot waits for the Touch Sensor to be
pressed in and then released out.
Default sensor port: dgtl6.

startMotor();
untilBump();
stop();

startMotor(port8, 63);
untilBump(dgtl10);
stop();

Until Button Press
The robot waits for a button on the VEX LCD

to
be pressed.

startMotor();
untilButtonPress();
stop();

startMotor(port8, 63);
untilButtonPress(rightBtnVEX);
stop();

Until Sonar - Less Than
The robot waits for the Sonar Sensor to read a
value in cm less than the threshold.
Default threshold and sensor port: 30, dgtl8+9.

startMotor();
untilSonarLessThan();
stop();

startMotor(port8, 63);
untilSonarLessThan(45, dgtl2);
stop();

Until Sonar - Greater Than
The robot waits for the Sonar Sensor to read a
value in cm greater than the threshold.
Default threshold and sensor port: 30, dgtl8+9.

startMotor();
untilSonarGreaterThan();
stop();

startMotor(port8, 63);
untilSonarGreaterThan(45, dgtl2);
stop();

ROBOTC Natural Language - Cortex Quick Reference:

ROBOTC Natural Language - Cortex Quick Guide • 2© 2010 Carnegie Mellon Robotics Academy / For use with VEX Robotics Systems

Until Potentiometer - Greater Than
The robot waits for the Potentiometer Sensor
to read a value greater than a set position.
Default threshold and sensor port: 2048, in6.

startMotor(port8, 63);
untilPotentiometerGreaterThan();

stop();

startMotor(port8, 63);
untilSonarGreaterThan(4000, in4);
stop();

Until Potentiometer - Less Than
The robot waits for the Potentiometer Sensor
to read a value less than a set position.
Default threshold and sensor port: 2048, in6.

startMotor(port8, 63);
untilPotentiometerLessThan();

stop();

startMotor(port8, 63);
untilSonarLessThan(40, in4);
stop();

Until Dark
The robot waits for the Light Sensor to read a
value less than the threshold.
Default threshold and sensor port: 505, in2.

startMotor();
untilDark();
stop();

startMotor(port8, 63);
untilDark(1005, in4);
stop();

Until Light
The robot waits for the Light Sensor to read a
value greater than the threshold.
Default threshold and sensor port: 505, in2.

startMotor();
untilLight();
stop();

startMotor(port8, 63);
untilLight(1005, in4);
stop();

Until Rotations
The robot waits for an encoder to reach a
specified number of rotations.
Default rotations, encoder: 1.0, dgtl1+2

startMotor();
untilRotations();
stop();

startMotor(port8, 63);
untilRotations(2.75, dgtl3);
stop();

Until Encoder Counts
The robot waits for an encoder to reach a
specified number of encoder counts.
Default counts, encoder: 360, dgtl1+2.

startMotor();
untilEncoderCounts();
stop();

startMotor(port8, 63);
untilEncoderCounts(990, dgtl3);
stop();

LED ON
Turn an LED in a specified digital port ON.
Default sensor port: dgtl2.

turnLEDOn();
wait();
turnLEDOff();

turnLEDOn(dgtl7);
wait(0.5);
turnLEDOff(dgtl7);

LED OFF
Turn an LED in a specified digital port OFF.
Default sensor port: dgtl2.

turnLEDOn();
wait();
turnLEDOff();

turnLEDOn(dgtl7);
wait(0.5);
turnLEDOff(dgtl7);

Flashlight ON
Turn a VEX Flashlight in a specified motor port
ON at a specified brightness.
Default motor port and brightness: port4, 63.

turnFlashlightOn();
wait();
turnFlashlightOff();

turnFlashlightOn(port10, 127);
wait(0.5);
turnFlashlightOff(port10);

Flashlight OFF
Turn a VEX Flashlight in a specified motor port
OFF.
Default motor port: port4.

turnFlashlightOn();
wait();
turnFlashlightOff();

turnFlashlightOn(port10, 127);
wait(0.5);
turnFlashlightOff(port10);

Robot Type
Choose which robot you are using (Recbot or
Swervebot).
Default bot: none.

robotType(); robotType(swervebot);

ROBOTC Natural Language - Cortex Quick Reference:

ROBOTC Natural Language - Cortex Quick Guide • 3© 2010 Carnegie Mellon Robotics Academy / For use with VEX Robotics Systems

Forward
The robot drives straight forward.
Default speed: 95.

forward();
wait();
stop();

forward(63);
wait(2.0);
stop();

Backward
The robot drives straight backward.
Default speed: -95.

backward();
wait();
stop();

backward(63);
wait(2.0);
stop();

Point Turn
The robot makes a sharp turn in place.
Default direction and speed: right, 95.

pointTurn();
wait();
stop();

pointTurn(left, 63);
wait(0.4);
stop();

Swing Turn
The robot makes a wide turn, activating only
one drive motor.
Default direction and speed: right, 95.

swingTurn();
wait();
stop();

swingTurn(left, 63);
wait(0.75);
stop();

Stop
The robot halts both driving motors, coming to
a stop.

forward();
wait();
stop();

forward(63);
wait(2.0);
stop();

Line Track - for Time
The robot tracks a dark line on a light surface
for a specified time in seconds.
Default time, threshold, sensors: 5.0, 505, in1, in2, in3 (Left, Center,

lineTrackForTime();
stop();

lineTrackForTime(7.5, 99, in6, in7, in8);

stop();

Line Track - for Rotations
The robot tracks a dark line on a light surface
for a specified distance in rotations.
Default time, threshold, sensors: 3.0, 505, in1, in2, in3 (Left, Center,

lineTrackForRotations();
stop();

lineTrackForRotations(4.75, 99, in6, in7, in8);

stop();

Move Straight - for Time
The robot will use encoders to maintain a
straight path for a specified time in seconds.
Default time, rightEncoder, leftEncoder: 5.0, dgtl1+2, dgtl3+4.

moveStraightForTime();
stop();

moveStraightForTime(7.5, dgtl5, dgtl3);
stop();

Move Straight - for Rotations
The robot will use encoders to maintain a straight
path for a specified distance in encoder rotations.
Default rotations, rightEncoder, leftEncoder: 1.0, dgtl1+2, dgtl3+4.

moveStraightForRotations();
stop();

moveStraightForRotations(4.75, dgtl5, dgtl3);

stop();

Tank Control
The robot is remote controlled with the right motor mapped to
the right joystick and the left motor mapped to the left joystick.
Default right and left and joystick: Ch2, Ch3.

while(true)
{
	 tankControl();
}

while(true)
{
	 tankControl(Ch1, Ch4);
}

Arcade Control
The robot is remote controlled with both
motors mapped to a single joystick.
Default vertical and horizontal joysticks: Ch2, Ch1.

while(true)
{
	 arcadeControl();
}

while(true)
{
	 arcadeControl(Ch1, Ch4);
}

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems ROBOTC Debugger • 1

ROBOTC Debugger Overview

ROBOTC has a debugging capability that enables unparalleled, interactive access to the robot
as your program is running. Using the debugger will significantly reduce the time it takes to write
programs and find erros in your code. With ROBOTC’s real-time debugger you can:

•	 Start and stop your program from the computer
•	 “Single step” through your program, running one line of code at a time and examine the

results (the values of variables, sensors, ect.) and the flow of execution
•	 Read and write the values of all the variables defined in your program
•	 Read the write the values of all the motors and sensors configured on your microcontroller

A “debugger” is a programming tool that enables you to quickly write and correct code,
and allows you to interact with all of the inputs (sensors, timers, ect.) and ouputs (motors,
LED’s, ect.) connected to your VEX microcontroller.

Note: Traditional Debugging Techniques
Debugging a program (finding the errors and correcting them) can be a slow process without a
real-time debugger. Without a debugger you may have to resort to other techniques:

•	 Adding code to turn on different LED’s as the microcontroller executes different sections of
code. You then try to determine from the LED’s what is being executed within your program.

•	 Adding “print” statements to your code at various points in the program, if your
microcontroller has a display device. By examining the display, you can (hopefully)
determine what is happening in your program.

Both of the above techniques are available in ROBOTC, but a real-time debugger eliminates the
need to resort to them. There’s no need to add code to debug your program!

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems ROBOTC Debugger • 2

ROBOTC Debugger Debug Window
The Program Debug window appears every time you download a program to your VEX
microcontroller, and is in control of the connection between your computer and robot controller.
Closing it will terminate the connection between your computer and the robot controller, along
with any other open debug windows.

Start / Stop
Pressing the Start button will start the program execution on your robot controller, and the text on
button will change to “Stop”. Pressing the Stop button will stop the program execution.

Suspend
Pressing the Suspend button will suspend (pause) the program execution on your robot
controller.

Step Into
Pressing the Step Into button will execute the next command in your program.

Clear All
The Clear All button will reset all of the values being displayed by the other debug windows.

Once
Pressing the Once button will update the values in the other debugger windows once.

Pause Refresh / Continuous
Pressing the Pause Refresh button will cause the values in the debugger windows to stop
updating. Pressing it will also cause the text to change to “Continuous”. Pressing the Continuous
button will cause the values in the debugger windows to update continuously. Pressing it will also
cause the text to change to “Pause Refresh”.

Note: For continuous value updates on the other debug windows, make sure the button says
Pause Refresh, and not Continuous.

The recommended method of
opening the Program Debug window,
and establishing a connection
with the robot is by downloading a
program to the robot. However, the
debugger can also be launched by
selecting “Debugger” from the Robot
menu in ROBOTC.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems ROBOTC Debugger • 3

The ROBOTC Debugger Global Variables
The Global Variables window displays the current values of every variable declared in
your program. Using the ROBOTC debugger, not only can you view the variable’s names
and values, you can also change their values in real-time. To change the value of one of
the variables, select the Value box of the variable you’d like to change, type in the new
value, and press Enter on your keyboard.

The Global Variables window can be opened by going to the Robot menu, Debug Windows,
and selecting Global Variables.

Index
The index of the variable, in memory.

Variable
The name of the variable, defined in the program.

Value
The value of the variable during program execution. Values will update automatically if the
Program Debug window is set to update continuously.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems ROBOTC Debugger • 4

The ROBOTC Debugger Timers
The Timers debug window provides access to current values of the timers built-in to your
microcontroller. On the VEX Cortex, there are 4 user-accessible timers (T1, T2, T3, and T4),
and two system timers (nSysTime and nPgrmTime). The 4 user-accessible timers can be
modified in real-time using the Timers debug window, but the two system timers cannot.

Index
The index of the timer (T1-T4).

Timer
Name of the timer. “nSysTime” is the amount of time the controller has been powered on.
“nPgmTime” is the amount of time the current program has run. Timer1 through Timer4
can be reset and monitored in your programs.

Time
Displays the elapsed time.

The Timers window can be opened by going to the Robot menu, Debug Windows, and
selecting Timers.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems ROBOTC Debugger • 5

The ROBOTC Debugger Motors
The Motors debug window provides access to the current values of the motors, servos and
flashlights on your microcontroller. Motor, servo and flashlight power levels can be viewed
and changed using this window.

Index
The index of where the current device is located (port1-port10).

Motor
Current name of the motor. These names can be customized through the Motors
and Sensor Setup window.

Value
Displays the current power level of the motor.

The Motors window can be opened by going to the Robot menu, Debug Windows,
and selecting Motors.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems ROBOTC Debugger • 6

The ROBOTC Debugger Sensors
The Sensors debug window provides access to the current values of all sensors, digital
inputs and digital outputs configured on your microcontroller. Sensor values can be viewed
and changed using this window, but you must first use the Motors and Sensors Setup menu
to tell ROBOTC what types of sensors are connected to which ports. Different sensors are
interpreted differently by ROBOTC and and the microcontroller, and appropriate values will not
be displayed if they are not properly configured.

Index
The index of where the current device is located (in1 - in8 for ANALOG Ports 1 - 8,
and dgtl1 - dgtl12 for DIGITAL Ports 1 - 12).

Device
Current name of the sensor. These names can be customized through the Motors
and Sensor Setup window.

Type
Displays the type of the current sensor. The type must be set using the Motors and
Sensor Setup window.

Value
Displays the current value of the sensor.

The Sensors window can be opened
by going to the Robot menu, Debug
Windows, and selecting Sensors.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems ROBOTC Debugger • 7

The ROBOTC Debugger Sensors
To configure the sensors connected to
your microcontroller, open the Motors
and Sensors Setup from the Robot
menu in ROBOTC.

Digital sensors (Bumper, Limit, Encoder, Ultrasonic) can be configured on the “VEX 2.0 Digital
Sensors 1-12” tab, and analog sensors (Light, Line Follower, Potentiometer, Accelerometer) can
be configured on the “VEX 2.0 Analog Sensors 1-8” tab. To configure a sensor, first locate the
row that aligns with where the sensor is plugged in on the Cortex. For example, “dgtl2” is short for
DIGITAL Port 2 on the Cortex. Next, give the sensor a custom name and define its sensor type in the
dropdown menu. After applying your chages, redownload your program to the microcontroller to have
the changes take effect in the Sensor debug window.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems ROBOTC Debugger • 8

The ROBOTC Debugger Miscellaneous
There are several additional debug windows available in the “Expert” and “Super User” modes
of ROBOTC. To unlock these windows, change your Menu Level, by going to Window > Menu
Level, and selecting one of the other modes. The additional debug windows are very powerful,
and can be very helpful in advanced applications.

For additional information on these debug windows, along with the ones covered in this
document, view the ROBOTC Debugger section of the built-in ROBOTC Help documentation.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems White Space • 1

White Space with Natural Language

Program Without White Space

task main()
{
 startMotor(armMotor, 63);
 untilTouch(bumper);
 stopMotor(armMotor);
 wait(2.0);
 startMotor(armMotor, 63);
 untilRelease(bumper);
 stopMotor(armMotor);
}

Both programs will perform the same, however, the second uses white space to organize the
code to separate the program’s two main behaviors: moving the arm up and moving the arm
down. In this case, line breaks (returns) were used to vertically segment the tasks.

Horizontal white space characters like spaces and tabs are also important. Below, white
space is used in the form of indentations to indicate which lines are within which control
structures (task main, while loop, if-else statement).

White Space is the use of spaces, tabs, and blank lines to visually organize code. Programmers
use White Space since it can group code into sensible, readable chunks without affecting how the
code is read by a machine. For example, a program that moves an arm up until a touch sensor is
pressed, stops, waits for 2 seconds, and then moves down until the touch sensor is released could
look like either of these:

	 task main()
{
 startMotor(armMotor, 63);
 untilTouch(bumper);
 stopMotor(armMotor);

 wait(2.0);

 startMotor(armMotor, 63);
 untilRelease(bumper);
 stopMotor(armMotor);
}

Program With White Space

Program Without White Space

task main()
{
while(true)
{
if(SensorValue(touch)==0)
{
startMotor(armMotor, 63);
}
else
{
startMotor(armMotor, -63);
}
}
}

Program With White Space

task main()
{
 while(true)
 {
 if(SensorValue(touch)==0)
 {
 startMotor(armMotor, 63);
 }
 else
 {
 startMotor(armMotor, -63);
 }
 }
}

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Comments • 1

#pragma config(Sensor, dgtl1, bumper, sensorTouch)
#pragma config(Motor, port2, armMotor, tmotorNormal, openLoop)
//*!!Code automatically generated by ‘ROBOTC’!!*//

/*
 This is part of a multi-line comment.
	 This program uses commenting to describe each process.
*/
task main()
{
 startMotor(armMotor, 63); //Turn armMotor on at 1/2 power
 untilTouch(bumper); //Wait for bumper switch to be touched
 stopMotor(armMotor); //Stop the armMotor
}

Below is an example of a program with single and multi-line comments. Commented text turns green.

Commenting a program means using descriptive text to explain portions of code. The
compiler and robot both ignore comments when running the program, allowing a programmer
to leave important notes in non-code format, right alongside the program code itself. This is
considered very good programming style, because it cuts down on potential confusion later
on when someone else (or even you) may need to read the code.
There are two ways to mark a section of text as a comment rather than normal code:

Type Start Notation End Notation
Single line // (none)
Multiple line /* */

“Commenting out” Code
Commenting is also sometimes used to temporarily “disable” code in a program without
actually deleting it. In the program below, the programmer has code to move an arm up and
then move the arm down. However, in order to test only the second half of the program, the
programmer made the first behavior into a comment, so the robot will ignore it. When the
programmer is done testing the second behavior, he/she can remove the // comment marks to
re-enable the first behavior in the program.

task main()
{
 //startMotor(armMotor, 63); //Turn armMotor on at 1/2 power
 //untilTouch(bumper); //Wait for bumper switch to be touched
 //stopMotor(armMotor); //Stop the armMotor

 wait(2.0);	 //Wait 2.0 seconds

 startMotor(armMotor, -63); //Turn armMotor on at -1/2 power
 untilRelease(bumper); //Wait for bumper switch to be released
 stopMotor(armMotor); //Stop the armMotor
}

Comments with Natural Language

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Error Messages in ROBOTC Code • 1

ROBOTC has a built-in compiler that analyzes your programs to identify syntax errors, capitalization
and spelling mistakes, and code inefficiency (such as unused variables). The compiler runs every
time you download code to the robot and when you choose to compile your program from the Robot
menu in ROBOTC.

Notifications regarding any errors, warnings and important information the compiler finds are
displayed in the Errors display screen of the ROBOTC interface.

The Errors display screen reports the number of errors in your code, as well as their types.
Double-clicking a compiler message in the Error display screen will highlight the relevant line of
code in your program. Depending on the type of error, ROBOTC will only be able to highlight the
approximate location. For instance, in the example above the missing semicolon is on line 7 but
ROBOTC will highlight line 8.

ROBOTC generates three types of compiler messages: Errors, Warnings and Information:

Errors:
There was an issue your program that prevented it from compiling. These are usually misspelled
words, missing semicolons, and improper syntax. Errors are denoted with a Red X.

Warnings:
There was a minor issue with your program, but the compiler was able to fix or ignore it. These are
usually incorrect capitalizations or empty, infinite loops. Warnings are denoted with a Yellow X.

Information:
ROBOTC will generate information messages when it thinks you have declared functions or
variables that are not used in your program. These messages inform you about inefficient
programming. Information messages are denoted with a White X.

Error Messages in ROBOTC Code

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Error Messages in ROBOTC Code • 2

Common Error Messages
Error messages will prevent your program from compiling and downloading to your robot.
You must correct any and all error messages in your program before you will be able to
download it to your robot. Also, error messages can have a “ripple” effect; errors at the
beginning of your program can cause subsequent errors in the code. Because of this, it’s
recommended that you correct errors at the beginning of your program first, recompile your
code, and then correct any remaining errors.

Most error messages are caused by misspelled reserved words and improper syntax. Many
of these mistakes can be avoided by dragging commands from the Function Library into your
ROBOTC programs.

In the example below, the T in task main is capitalized, causing multiple subsequent errors
and warnings to appear in the Errors display screen.

Error Messages in ROBOTC Code

In situations like these, it’s recommended that you try to correct the first error in your program
before moving on. The first error message reads “**Error**:Undefined variable ‘Task’. ‘short’
assumed.” When the words “Undefined variable” appear in the Errors display screen, it indicates
that ROBOTC does not recognize the specified word; the fact that Task is colored black instead of
blue like other ROBOTC reserved words also indicates that ROBOTC does not recognize it.

To correct this error, you should replace the uppercase T with a lowercase t in task, and recompile
your code. The compiler will reevaluate your code and generate a new set of notifications.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Error Messages in ROBOTC Code • 3

Common Error Messages
The example below contains two syntax errors: a missing curly brace on line 2 and a missing
semicolon on line 6. Once again, you should try to correct the first error in the program before
moving on.

The first error message comes up on line 4, saying “**Error**:Expected->’{‘. Found ‘int’”. When the
word “Expected->” appears in the Errors display screen, it usually indicates that a piece of syntax
is missing. In this case, it expected to find the missing curly brace immediately after task main(),
but found the reserved word int instead. To correct this error, you should add the opening curly
brace on line 2 and then recompile your code.

After recompiling your code, any remaining errors will be displayed. Missing semicolons also
display an “Expected->” style error message, but notice that the error for the missing semicolon on
line 6 appears on line 7. This is because the compiler ignores whitespace (blank lines, spaces and
tabs), but expected a semicolon before it encountered the wait command. To correct this error, you
should add a semicolon after the forward command.

Error Messages in ROBOTC Code

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Error Messages in ROBOTC Code • 4

Common Error Messages
The example below, the ROBOTC compiler does not recognize the forward, wait or stop
commands. Error messages that begin with “**Error**:Undefined procedure” indicate that
ROBOTC does not recognize the command; this is also indicated by the commands failing to
turn blue like other ROBOTC reserved words.

Error Messages in ROBOTC Code

There are two main causes for this error:

 1. The command is misspelled
 2. The correct ROBOTC Platform Type is not selected.

To correct this error:

 1. Verify that your spelling and capitalization is correct.
 2. Verify that you have the appropriate Platform Type selected. If you are using Natural Language
 commands, you must have the Natural Language Platform Type selected.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Error Messages in ROBOTC Code • 5

Common Warning Messages
Warning messages are used to notify you about possible programming and logic errors in
your program. With warning messages, the compiler is able to fix or ignore the issues so
they will not prevent your program from compiling or downloading to your robot.

A common occurrence of warning messages are empty, infinite loops in your code. In the
example below, the an infinite loop is created, with no code embedded within the loop to stop
it from repeating forever. This is considered a warning, rather than an error, because it is
valid code and can be intentionally used by a programmer.

The warning message will inform you that there was a possible programming error caused
by an infinite loop: “*Warning*:Possible programming error. Infinite loop (unconditional
branch to itself) detected.”

Error Messages in ROBOTC Code

If creating an infinite loop was your intention, you do not need to correct this message. If it was not
intentional, you can:

 1. Include code within the curly braces of the while loop, for it to repeat.
 2. Change the condition of the while loop, so that it does not repeat forever.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Error Messages in ROBOTC Code • 6

Common Warning Messages
In the example below, the forward and stop commands are improperly capitalized. The
ROBOTC compiler is able to substitute in the correct forms of the commands, but uses warning
messages to notify you of the substitution. Note that it does not correct the capitalization in your
code, only what it sends to the robot. Again, the actual warning message inform you about the
substitution: “*Warning*:Substituting similar variable ‘forward’ for ‘Forward’. Check spelling and
letter case.”

You do not need to correct this message. If it was not intentional, you can:

 1. Include code within the curly braces of the while loop, for it to repeat.
 2. Change the condition of the while loop, so that it does not repeat forever.

Error Messages in ROBOTC Code

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Error Messages in ROBOTC Code • 7

Common Information Messages
Information messages will not prevent your program from compiling or downloading to your robot.
They only notify you regarding possible inefficiencies in your code.

The most common occurrence of information messages are unused variables in your code. In the
example below, the integer variable speed is created and initialized, but never actually used in the
program. This is indicated in the Errors display screen with the message: “‘speed’ is written but
has no read references”.

Error Messages in ROBOTC Code

You do not need to correct this message, but you can in two ways:

 1. Eliminate the code on line number 4, deleting the variable.
 2. Call the speed variable in the forward command on line 6, in place of the integer 63.

Handling other Error Messages
Learning how to program robots isn’t easy; it’s no different than learning a foreign language. This
document covers how to handle some of the more common mistakes and error messages that you
may encounter, but you may run into others. That said, here are some general rules for dealing
with all error messages:

•	 Determine if the message is an error, a warning, or just information. The message may not
even require additional work on your part!

•	 Read the error message for clues! Error messages aren’t always the most intuitive, but they
always contain some information about what the compiler found.

•	 When your program contains multiple errors, fix them one at a time, recompiling your code
after each fix. The “ripple” effect can make it seem like there are errors even if the rest of your
program is perfect.

•	 Pseudocode, pseudocode, pseudocode! Make sure you have a plan in place before you try
to write a complex program. That way you can work out the logic first, without having to worry
about it and the syntax, spelling and capitalization at the same time.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Troubleshooting ROBOTC with Cortex • 1

Troubleshooting ROBOTC with Cortex
This guide is to designed to be used by a student or teacher as a reference for help troubleshooting
ROBOTC software issues.

Troubleshooting Topics
•	 Computer will not Recognize the VEX Cortex
•	 Not able to Download my ROBOTC program over USB
•	 Not able to Download ROBOTC Firmware over USB
•	 Not able to Download Master CPU Firmware over USB
•	 Program will not Compile
•	 Program compiles, but does not behave as desired
•	 Not able to open the ROBOTC Debugger
•	 Motors and/or Sensors Debug windows not functioning correctly
•	 Program does not immediately run when Cortex is turned on

Problem: Computer will not Recognize the VEX Cortex
1. Was the correct startup sequence followed when connecting the Cortex to the computer?
•	 Start with the Cortex Turned OFF
•	 Connect the Cortex to the computer over USB
•	 Turn the Cortex On

2. Is the connected battery sufficiently charged?
•	 Swap in a fully charged battery

3. Does the Cortex need to be power cycled?
•	 Start with the Cortex Turned OFF
•	 Connect the Cortex to the computer over USB
•	 Turn the Cortex On

4. Try another USB port on the computer.
•	 Start with the Cortex Turned OFF
•	 Connect the Cortex to the computer over USB
•	 Turn the Cortex On

5. Try putting the Cortex into “Bootload” mode
•	 Start with the Cortex turned OFF (but with a battery connected)
•	 Push and hold Config button in on the Cortex.
•	 Attach the USB cable between the PC and Cortex.
•	 Wait for the Robot, VEXnet and Game lights to blink green.
•	 Release Config button.
•	 Turn the Cortex ON.
•	 Then in ROBOTC, click “Robot”, “Download Firmware”, “Master CPU Firmware”, “Standard File”.
•	 After the Master CPU Firmware finishes downloading, click “Robot”, “Download Firmware”, “ROBOTC

Firmware”, “Standard File”.
Additional Note: This step may be necessary if the Master CPU Firmware was corrupted and/or only partially
downloaded to the Cortex. Also possible, if the wrong firmware (VEXnet Joystick) was downloaded to the
Cortex, this step may be necessary.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Troubleshooting ROBOTC with Cortex • 2

Troubleshooting ROBOTC with Cortex

6. Make sure that your computer allows for “new hardware” to be connected. Extremely locked down
computers may prohibit new hardware such as the VEX Cortex from being connected.
•	 Contact your Tech Support for additional priviledges

7. Some SmartBoard software causes a conflict with the Cortex. The SMART Virtual TabletPC device can be
disabled to resolve the conflict.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Troubleshooting ROBOTC with Cortex • 3

Troubleshooting ROBOTC with Cortex
Problem: Not able to Download my ROBOTC program over USB
1. Was the correct startup sequence followed when connecting the Cortex to the computer?
•	 Start with the Cortex Turned OFF
•	 Connect the Cortex to the computer over USB
•	 Turn the Cortex On
•	 Retry downloading the program

2. Does the program compile?
•	 Fix any errors (red x’s)
•	 Retry downloading the program

3. Is the correct Platform Type Selected?
•	 Verify that the correct platform type is selected under Robot > Platform Type
•	 Retry downloading the program

4. Is the connected battery sufficiently charged?
•	 Swap in a fully charged battery
•	 Retry downloading the program

5. Does the Cortex need to be power cycled?
•	 Start with the Cortex Turned OFF
•	 Connect the Cortex to the computer over USB
•	 Turn the Cortex On
•	 Retry downloading the program

6. Have the Master CPU and ROBOTC Firmware been downloaded successfully to the Cortex?
•	 Do they need to be re-downloaded?
o	 Download the Master CPU Firmware..........................
o	 Download the ROBOTC Firmware
o	 Power Cycle the Cortex
o	 Retry downloading the program

7. Try another USB port on the computer.
•	 Start with the Cortex Turned OFF
•	 Connect the Cortex to the computer over USB
•	 Turn the Cortex On
•	 Retry downloading the program

8. Restart ROBOTC.
•	 Close ROBOTC
•	 Open ROBOTC
•	 Retry downloading the program

9. Restart the computer.
•	 Restart your computer
•	 Open ROBOTC
•	 Start with the Cortex Turned OFF
•	 Connect the Cortex to the computer over USB
•	 Turn the Cortex On
•	 Retry downloading the program

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Troubleshooting ROBOTC with Cortex • 4

Troubleshooting ROBOTC with Cortex
10. Additional Steps
•	 Try using the same program on another computer, with the same Cortex.
•	 Try using the same program on the same computer, with a different Cortex.
•	 Try using a different USB A-to-A cable.

Problem: Not able to Download ROBOTC Firmware over USB
1. Was the correct startup sequence followed when connecting the Cortex to the computer?
•	 Start with the Cortex Turned OFF
•	 Connect the Cortex to the computer over USB
•	 Turn the Cortex On
•	 Retry downloading the ROBOTC Firmware

2. Has the Master CPU Firmware been successfully downloaded?
•	 Download the Master CPU Firmware..........................
•	 Retry downloading the ROBOTC Firmware

3. Is the correct Platform Type Selected?
•	 Verify that the correct platform type is selected under Robot > Platform Type
•	 Retry downloading the ROBOTC Firmware

4. Is the connected battery sufficiently charged?
•	 Swap in a fully charged battery
•	 Retry downloading the ROBOTC Firmware

5. Does the Cortex need to be power cycled?
•	 Start with the Cortex Turned OFF
•	 Connect the Cortex to the computer over USB
•	 Turn the Cortex On
•	 Retry downloading the ROBOTC Firmware

6. Try another USB port on the computer.
•	 Start with the Cortex Turned OFF
•	 Connect the Cortex to the computer over USB
•	 Turn the Cortex On
•	 Retry downloading the ROBOTC Firmware

7. Restart ROBOTC.
•	 Close ROBOTC
•	 Open ROBOTC
•	 Retry downloading the ROBOTC Firmware

8. Restart the computer.
•	 Restart your computer
•	 Open ROBOTC
•	 Start with the Cortex Turned OFF
•	 Connect the Cortex to the computer over USB
•	 Turn the Cortex On
•	 Retry downloading the ROBOTC Firmware

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Troubleshooting ROBOTC with Cortex • 5

Troubleshooting ROBOTC with Cortex
9. Additional Steps
•	 Try downloading the ROBOTC Firmware using another computer, with the same Cortex.
•	 Try downloading the ROBOTC Firmware using the same computer, with a different Cortex.
•	 Try using a different USB A-to-A cable.

10. Slow down the firmware download by inserting delays.
•	 Go to Window > Menu level > and select Super User
•	 Go to View > Preferences > Detailed Preferences...
•	 Go to the VEX Cortex Tab
•	 - The box next to “Delay Between HID Write” allows you to specify a number of
	 milliseconds to insert as delays.
•	 Add a 5 millisecond delay
•	 Retry downloading the ROBOTC Firmware
•	 Continue to add short delays up until 100 milliseconds.
•	 Retry downloading the Master CPU firmware until success.

Problem: Not able to Download Master CPU Firmware over USB
1. Was the correct startup sequence followed when connecting the Cortex to the computer?
•	 Start with the Cortex Turned OFF
•	 Connect the Cortex to the computer over USB
•	 Turn the Cortex On
•	 Retry downloading the Master CPU Firmware

2. Is the correct Platform Type Selected?
•	 Verify that the correct platform type is selected under Robot > Platform Type
•	 Retry downloading the Master CPU Firmware

3. Is the connected battery sufficiently charged?
•	 Swap in a fully charged battery
•	 Retry downloading the Master CPU Firmware

4. Does the Cortex need to be power cycled?
•	 Start with the Cortex Turned OFF
•	 Connect the Cortex to the computer over USB
•	 Turn the Cortex On
•	 Retry downloading the Master CPU Firmware

5. Try another USB port on the computer.
•	 Start with the Cortex Turned OFF
•	 Connect the Cortex to the computer over USB
•	 Turn the Cortex On
•	 Retry downloading the Master CPU Firmware

6. Restart ROBOTC.
•	 Close ROBOTC
•	 Open ROBOTC
•	 Retry downloading the Master CPU Firmware

7. Restart the computer.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Troubleshooting ROBOTC with Cortex • 6

Troubleshooting ROBOTC with Cortex
•	 Restart your computer
•	 Open ROBOTC
•	 Start with the Cortex Turned OFF
•	 Connect the Cortex to the computer over USB
•	 Turn the Cortex On
•	 Retry downloading the Master CPU Firmware

8. Additional Steps
•	 Try downloading the Master CPU Firmware using another computer, with the same Cortex.
•	 Try downloading the Master CPU Firmware using the same computer, with a different Cortex.
•	 Try using a different USB A-to-A cable.

9. Slow down the firmware download by inserting delays.
•	 Go to Window > Menu level > and select Super User
•	 Go to View > Preferences > Detailed Preferences...
•	 Go to the VEX Cortex Tab
•	 - The box next to “Delay Between HID Write” allows you to specify a number of
	 milliseconds to insert as delays.
•	 Add a 5 millisecond delay
•	 Retry downloading the ROBOTC Firmware
•	 Continue to add short delays up until 100 milliseconds.
•	 Retry downloading the Master CPU firmware until success.

10. Try the download using the VEXnet Firmware Upgrade Utility, supplied by VEX Robotics.
•	 Download the VEXnet Firmware Upgrade Ultility, available here:
•	 http://www.vexforum.com/wiki/index.php/Software_Downloads
•	 Unzip the utility and instructions
•	 Follow the instructions included with the utility to update the firmware

Problem: Program will not Compile
1. If you’re using Natural Language functions, make sure you’re in the Natural Language platform type.
•	 Go to Robot > Platform Type
•	 Select the Natural Language option
•	 Go to Robot > Compile Program to recompile your code

2. Is the correct Platform Type Selected?
•	 Verify that the correct platform type is selected under Robot > Platform Type
•	 Retry downloading the program

3. Check your code for mistakes.
•	 Are you missing any curly braces?
•	 Are you missing any semicolons?
•	 Are any of your commands or variables improperly capitalized?
•	 Do any of your commands or variables contain typos?
•	 Go to Robot > Compile Program to recompile your code

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Troubleshooting ROBOTC with Cortex • 7

Troubleshooting ROBOTC with Cortex
4. Check the ROBOTC Errors window for hints.
•	 The ROBOTC Errors window (usually located at the bottom of the screen) will display
•	 a list of known errors, what line they’re on, and some information about the error.
•	 Double-click errors in the ROBOTC Errors window to highlight the affected line in your
•	 program.
•	 Correct errors (keep in mind yellow x’s are only warnings, and white x’s are only information,
•	 not errors).
•	 Go to Robot > Compile Program to recompile your code.

5. Compare your code to programs you know work and compile.
•	 Compare your code t similar ROBOTC Sample Programs (File > Open Sample Program)

Problem: Program compiles, but does not behave as desired
1. Compare your code to programs you know work and compile.
•	 Compare your code t similar ROBOTC Sample Programs (File > Open Sample Program)

2. Think “like the robot”. The robot does exactly what you tell it to do. Nothing more and nothing less.
•	 Is there an important step you’re forgetting to tell the robot?
•	 Go back to your pseudocode plan. Does the sequence of steps make sense for the robot?

3. Use the ROBOTC Program Debug window to “Step” through your code line-by-line.
•	 Download the program to the robot.
•	 When the Program Debug window appears, repeatedly press the “Step” button to run the program line-by-
line.
•	 Observe the robot’s behavior. How does it compare to the desired behavior?
•	 Try to identify where the robot’s behavior differs from the desired behavior.

4. Insert visual “flags” in your program.
•	 Insert optional wait statements or turn on different LED’s at different parts of the program.
•	 When the robot reaches one of the wait statements or LED’s, and behaved correctly, you know that the
program was correct up until that point.
•	 Continue to insert and observe these optional flags until you identify the problem.

Problem: Not able to open the ROBOTC Debugger
1. Was the correct startup sequence followed when connecting the Cortex to the computer?
•	 Start with the Cortex Turned OFF
•	 Connect the Cortex to the computer over USB
•	 Turn the Cortex On
•	 Retry downloading the program to open the debugger

2. Has the program been downloaded to the Cortex?
•	 Download the program to open the debugger

3. Have the Master CPU and ROBOTC Firmware been downloaded successfully to the Cortex?
•	 Do they need to be re-downloaded?
•	 Download the Master CPU Firmware
•	 Download the ROBOTC Firmware
•	 Power Cycle the Cortex
•	 Retry downloading the program to open the debugger

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Troubleshooting ROBOTC with Cortex • 8

Troubleshooting ROBOTC with Cortex
4. Check the VEX Cortex Download Method.
•	 Verify that the Robot > VEX Cortex Download Method is set to “Download using VEXnet or USB” or
“Download using USB Only”
•	 If it was set for Competition:
o	 Download the program
o	 Turn Cortex OFF
o	 Disconnect the Cortex from the computer
o	 Reconnect the Cortex to the computer over USB
o	 Turn the Cortex On
o	 Retry downloading the program to open the debugger

Problem: Motors and/or Sensors Debug windows not functioning correctly
1. Is the Cortex turned on and connected to a charged battery?
•	 Swap in a fully charged battery
•	 Turn the Cortex on
•	 Observe the debug window data

2. Has a program that correctly configures the sensors been downloaded to the robot?
•	 Download a program that correctly configures the sensors on the robot.
•	 Run the program
•	 Stop the program
•	 Observe the sensor data

3. Is the Program Debug window set to provide “Continuous” updates?
•	 Download the program to the robot
•	 Under the “Refresh Rate” section, verify that a button is not labeled “Continuous”
•	 If a button is labeled “Continuous”, press it to receive continuous updates
•	 Observe the sensor data

4. Have the Master CPU and ROBOTC Firmware been downloaded successfully to the Cortex?
•	 Do they need to be re-downloaded?
o	 Download the Master CPU Firmware..........................
o	 Download the ROBOTC Firmware
o	 Power Cycle the Cortex
o	 Re-download the program
o	 Observe the sensor data

5. Does the Cortex need to be power cycled?
•	 Start with the Cortex Turned OFF
•	 Connect the Cortex to the computer over USB
•	 Turn the Cortex On
•	 Re-download the program
•	 Observe the sensor data

6. Restart ROBOTC.
•	 Close ROBOTC
•	 Open ROBOTC
•	 Re-download the program
•	 Observe the sensor data

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Troubleshooting ROBOTC with Cortex • 9

Troubleshooting ROBOTC with Cortex

Problem: Program does not immediately run when Cortex is turned on
1. Check the VEX Cortex Download Method.
•	 Go to Robot > VEX Cortex Download Method
•	 Select “Download using USB Only” to have the program start automatically
•	 Download the program
•	 Turn Cortex OFF
•	 Disconnect the Cortex from the computer
•	 Turn the Cortex On
•	 Program should start automatically

Motion Accessories

Inventor’s Guide insert 2 Wire Motor 269 • 1

ac
ce

ss
or

ie
s

2-Wire Motor 269

For More Information, and additional Parts & Pieces refer to:

www.VEXrobotics.com

The 2-Wire Motor 269 replaces the 3-Wire Motor as the standard
VEX motor. All of the internal gears are made from a steel alloy,
which means the clutches and replacement gears are no longer
required. The 2-wire motor can be directly connected to the Cortex
and ARM9 microcontrollers’ internal motor controllers. An external

Limited 90-day Warranty
This product is warranted by Innovation First against manufacturing defects
in material and workmanship under normal use for ninety (90) days from
the date of purchase from authorized Innovation First dealers. For complete
warranty details and exclusions, check with your dealer.

Innovation First, Inc.
1519 IH 30 W
Greenville, TX 75402

03/10

INSERT THIS PAGE
at the back of the
Motion Chapter in your
VEX Inventor’s Guide.

2 Wire Motor x 1
Motor Post x 1

Screw 6-32 x 1/2” x 2 Screw 6-32 x 1/4” x 2

Motor Coupler
x 1

motor control module is required to connect the 2-wire motor to the PIC Microcontroller
V0.5. External motor control modules can also be used with the Cortex and ARM 9
microcontrollers.

Motor Coupler
The 2-Wire Motor 269 kit includes the new shaft coupler, which can be used in place of the
clutch to connect the motor to VEX shafts. The coupler can also be used to connect VEX
shafts together.

Motor Specifications
All motor specifications are at 7.2 volts. Actual motor specifications are within 20% of the
values below.

Description Specification
Stall Torque 8.6 in-lb [0.97 N-m]
Free Speed 100 RPM
Stall Current 2.6 Amps
Free Current 0.18 Amps

Motion Accessories

Inventor’s Guide insert 2 Wire Motor 393 • 1

ac
ce

ss
or

ie
s

2 Wire Motor 393

For More Information, and additional Parts & Pieces refer to:

www.VEXrobotics.com

The 2 Wire Motor 393 provides up to 60% more torque than the
standard motor, which will allow more powerful mechanisms and drive
bases. All of the internal gears are made from a steel alloy, which
means that clutches and replacement gears are no longer required.
The 2 wire motor can be directly connected to the Cortex and ARM 9

Limited 90-day Warranty
This product is warranted
by Innovation First against
manufacturing defects in material
and workmanship under normal
use for ninety (90) days from the
date of purchase from authorized
Innovation First dealers. For
complete warranty details and
exclusions, check with your dealer.

Innovation First, Inc.
1519 IH 30 W
Greenville, TX 75402

12/10

INSERT THIS PAGE
at the back of the
Motion Chapter in your
VEX Inventor’s Guide.

2 Wire Motor x 1 Motor Post x 1

Screw 6-32 x 1/2” x 2 Screw 6-32 x 1/4” x 2

Motor Coupler
x 1

Change
Gears x 1

microcontrollers’ internal motor controllers. An external motor control module is required to
connect the 2 wire motor to the PIC Microcontroller V0.5. External motor control modules
can also be used with the Cortex and ARM 9 microcontrollers.

High Speed Option
Want to go faster than the standard motor but still have the same output torque as the
standard motor? No problem! The 2 Wire Motor 393 kit can be configured into a “high
speed” version. Simply follow the “Gear Change Procedure” step-by-step instructions to
increase the output speed by 60%.

Motor Coupler
The 2 Wire Motor 393 Kit includes the new shaft coupler which can be used in place of the
clutch to connect the motor to VEX shafts. The coupler can also be used to connect VEX
shafts together.

Motor Specifications
All motor specifications are at 7.2 volts. Actual motor specifications are within 20% of the
values below.

Description As Shipped High Speed Option
Stall Torque 13.5 in-lb [1.68 N-m] 8.4 in-lb [1.05 N-m]
Free Speed 100 RPM 160 RPM
Stall Current 3.6 Amps
Free Current 0.15 Amps

Motion Accessories

Inventor’s Guide insert2 Wire Motor 393 • 2

ac
ce

ss
or

ie
s

2 Wire Motor Kit, continued

Gear Change Procedure
To configure the high speed option, follow
these instructions:

2. Lift off the top cover. Do not disturb the
gears inside.

3. Lift off the output bushing and place
to the side. This will be used later.

4. Remove the middle gear and the output
shaft gear.

5. Install the high speed middle gear. 6. Install the high speed output shaft gear.

7. Install the output bushing removed in step 3.
Make sure the bushing orientation is as shown.

8. Replace the cover and four screws
removed in steps 1 and 2.

1. Remove the four screws in the corners
of the front of the motor case.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Servo Motors • 1

Servo Motors Overview

A Servo Module (or Servo Motor) rotates its shaft to a set angular position, between 0 and
120 degrees. Once its position has been set in a ROBOTC program, the Servo Module will
continually draw power to maintain that position until another is specified. Servo Modules can
be plugged into any of the MOTORS ports in ROBOTC.

Servo Modules are typically and appropriately found in robotic grippers and arms because
of their small range of motion, ability to be set to a specific position, and ability to hold that
position. They can be set to values ranging from -127 to 127, with -127 being fully rotated
one way and 127 fully rotated the other.

Mounted Servo Module
Here, the Servo Module is mounted on
Squarebot 3.0. It allows the arm to be
rotated and held at specific positions.

The only differences in appearance
between the VEX Servo and Motor
Modules are their labels on the back,
but the two should not be confused.
When a Motor Module is set equal
to a value, it uses that value as a
power setting and starts spinning its
shaft in continuous rotations. When
a Servo Module is set equal to a
value, however, it uses that value to
rotate its shaft to a position and hold
it there.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Servo Motors • 2

	 motor[port6] = -127; //Set position fully backward
	 wait1Msec(1000); //Wait for 1 second

	 motor[port6] = -95; //Set position 3/4 backward
	 wait1Msec(1000); //Wait for 1 second

	 motor[port6] = -63; //Set position 1/2 backward
	 wait1Msec(1000); //Wait for 1 second

	 motor[port6] = -31; //Set position 1/4 backward
	 wait1Msec(1000); //Wait for 1 second

	 motor[port6] = 0; //Set position to middle
	 wait1Msec(1000); //Wait for 1 second

	 motor[port6] = 31; //Set position 1/4 forward
	 wait1Msec(1000); //Wait for 1 second

	 motor[port6] = 63; //Set position 1/2 forward
	 wait1Msec(1000); //Wait for 1 second

	 motor[port6] = 95; //Set position 3/4 forward
	 wait1Msec(1000); //Wait for 1 second

	 motor[port6] = 127; //Set position fully forward
	 wait1Msec(1000); //Wait for 1 second

Servo Motors Sample Code

Rotating the Servo Modules Shaft to Different Positions
This code rotates a Servo Module on MOTOR Port 6 to a different position every second,
starting at -127 (fully backward) and ending at 127 (fully forward).

 servomotor kit • 1

Inventor’s Guide insert

ac
ce

ss
or

ie
s

ac
ce

ss
or

ie
s

motion accessories

Servomotor
As explained in the Motion Subsystem section of the
Inventor’s Guide, servomotors are a type of motor that can
be directed to turn to face a specific direction, rather than
just spin forward or backward.

servomotor x 1

INSERT THIS PAGE
at the back of the
Motion Chapter in your
Vex Inventor’s Guide.

servomotor kit

screw 6-32 x ¼" x 2

screw 6-32 x ½" x 2

clutch post x 1

replacement gears x 2

© 2005 Innovation One. All Rights Reserved. Vex and Vex Robotics Design System are trademarks of Innovation One.

Limited 90-day Warranty
This product is warranted by Innovation One
against manufacturing defects in material and
workmanship under normal use for ninety (90)
days from the date of purchase from authorized
Innovation One dealers. For complete warranty
details and exclusions, check with your dealer.

Innovation One, Inc.
350 North Henderson Street
Fort Worth, TX 76102

11/04

Printed in China

0105

ac
ce

ss
or

ie
s

Auxiliary Accessories

Flashlight

Flashlight Kit • 1

For More Information, and additional Parts & Pieces refer to:

www.VEXRobotics.com

Limited 90-day Warranty
This product is warranted by
VEX Robotics, Inc. against
manufacturing defects in material
and workmanship under normal use
for ninety (90) days from the date
of purchase from authorized VEX
Robotics dealers. For complete
warranty details and exclusions,
check with your dealer.

VEX Robotics, Inc.
1519 IH 30 W
Greenville, TX 75402

4/10

The Flashlight will help your robots see in the dark! The included Flashlight will turn night
into day with its four powerful LEDs, allowing for robot operation in low-light conditions.

Instructions for use:
1.	 Simply mount the Flashlight either using the included standoffs and screws, or other VEX

hardware.
a.	 The mounting tab at the bottom of the Flashlight will allow it to mount easily onto the

side of any VEX component.

2.	 Plug the 2-prong cable into a power-source. This accessory will draw power from
a 3-wire PWM motor port on a VEX Microcontroller. When connecting to a
VEX Microcontroller - plug the 2-prong connector into a 3-pin socket of a Motor
Port such that the connector is against the flat edge (not the keyed edge) as
shown. The key on the 2-prong Flashlight connector should NOT be inserted into
the key of the socket.

3” Threaded
Standoff (2x)

VEX Microcontroller
3-wire PWM Motor Ports

Connecting to
a “flat edge”

Your Robot
Structure LED Flashlight

Module (1x)
8-32 x 1/4” Long

Screw (4x)

8
7
6
5
4
3
2
1

3.	 Switch the Flashlight switch to “on”.
a.	 Ensure the Microcontroller is turned on and has power.

Inventor’s Guide insert

ac
ce

ss
or

ie
s

ac
ce

ss
or

ie
s

sensor accessories

 ultrasonic sensor kit • 1

Ultrasonic Sensor Kit
“Ultrasonic” refers to very high-frequency sound – sound
that is higher than the range of human hearing. Sonar, or
“Sound Navigation And Ranging,” is an application of
ultrasonic sound that uses propagation of these high-
frequency sound waves to navigate and detect obstacles.
Sonar has a wide variety of applications and a wide variety
of users, from submarines avoiding underwater obstacles to
hungry bats looking for their dinner!

ultrasonic module x 1

INSERT THESE PAGES
at the back of the
Sensor Chapter in your
Vex Inventor’s Guide.

screw x 2
(8-32, ³/8")

keps nut x 2

© 2005 Innovation One. All Rights Reserved. Vex and Vex Robotics Design System are trademarks of Innovation One.

ultrasonic sensor kit

Limited 90-day Warranty
This product is warranted by Innovation One
against manufacturing defects in material and
workmanship under normal use for ninety (90)
days from the date of purchase from authorized
Innovation One dealers. For complete warranty
details and exclusions, check with your dealer.

Innovation One, Inc.
350 North Henderson Street
Fort Worth, TX 76102

11/04

Printed in China

0405

YOU MUST HAVE A
PROGRAMMING KIT
TO USE THIS SENSOR!

ultrasonic sensor kit • 2 Inventor’s Guide insert

ac
ce

ss
or

ie
s

sensor accessories

ac
ce

ss
or

ie
s

ultrasonic sensor kit, continued

1 Technical overview
 The ultrasonic sensor determines the distance to a reflective surface by
 emitting high-frequency sound waves and measuring the time it takes for
 the echo to be picked up by the detector.

 The ultrasonic sensor actually consists of two parts: an emitter, which
 produces a 40kHz sound wave; and a detector, which detects 40kHz
 sound waves and sends an electrical signal back to the microcontroller.
 In order to determine the distance to an object, it is necessary to
 implement a timing loop in your microcontroller code to measure the
 length of time required for the sound wave generated by the emitter to
 traverse the distance to the object.

 The distance to the object can then be calculated with the following
 formulas:

Distance to object = ½ (speed of sound) X (round trip delay)

[Note: speed of sound varies with altitude and temperature. At sea level and room
temperature, it’s approximately 344.2 m/s or 1135 ft/s. It will increase with
temperature and decrease with altitude.]

Therefore
Distance in feet = 567.5 ft/s X (round trip delay)
or
Distance in meters = 172.1 m/s X (round trip delay)

Emit sound wave

Detect sound wave

The number of seconds
for the sound wave to be
detected = round trip delay

The ultrasonic sensor
can determine the
distance to an object
between 3cm
and 3m away; closer
than 3cm will result
in the sound waves
echoing back to the
sensor before the
detector is ready to
receive.

Inventor’s Guide insert

ac
ce

ss
or

ie
s

sensor accessories

 ultrasonic sensor kit • 3

ultrasonic sensor kit, continued

1 Technical overview
 The steps your robot’s program will have to follow in order to calculate
 the distance to an object are:

1. The Vex microcontroller
sends a “start” signal to the
ultrasonic sensor.

2. The ultrasonic sensor
generates a 250 microsecond
ultrasonic pulse.

3. The ultrasonic sensor
sets its output signal to
+5V, thus sending a
“high” signal to the
microcontroller. In digital
terms, this is a “1”.

4. A timing loop on the
microcontroller begins,
counting the seconds. This
will be the “round trip
delay” in the distance
equation.

5. The ultrasonic
sensor picks up the
echo from the 250
microsecond pulse.

6. The ultrasonic sensor
sets its output signal to
0V, thus sending a “low”
signal to the microcon-
troller. In digital terms,
this is a “0”.

7. The Vex microcontroller
exits the timing loop and
uses the round trip delay to
calculate the distance to the
object.

ultrasonic sensor kit • 4 Inventor’s Guide insert

ac
ce

ss
or

ie
s

sensor accessories

ultrasonic sensor kit, continued

2 Connecting the ultrasonic sensor to the
 microcontroller

3 Reprogramming the microcontroller to enable the
 ultrasonic sensor to generate a “ping”
 Start by plugging the “INPUT” and “OUTPUT” connectors into any two ports in
 the Interrupts bank on the Vex Microcontroller.

The ultrasonic module has two three-pin connectors that will each plug into an
 interrupt port on the Vex Microcontroller. These can be adjacent ports, but do not
 have to be. The connector labelled “INPUT” is the trigger output of the Vex
 microcontroller; the ultrasonic module receives a start signal from the Vex
 microcontroller on this line. The connector labelled “OUTPUT” is the echo
 response from the ultrasonic detector; this is the line through which the Vex
 microcontroller receives output from the detector, indicating that it has picked
 up an echo.

 In order for your robot to be able to read the sensor, you will have to reprogram the
 microcontroller. Sample code to help you get started is available on the VexLABS.com
 website. Refer to the Programming chapter in your Vex Inventor’s Guide for
 information on how to add or change code.

5 • 63

Sensor

Inventor’s Guide

27
6-

21
78

-E
-0

61
0

Bumper Switch Sensor
Signal: Digital
Description: The bumper
sensor is a physical switch.
It tells the robot whether the
bumper on the front of the
sensor is being pushed in or
not.

Technical Info:
Type: SPST switch
(“Single Pole, Single Throw”)
configured for Normally Open
behavior.
Signal Behavior: When the
switch is not being pushed in,
the sensor maintains a digital
HIGH signal on its sensor port.
This High signal is coming from
the Microcontroller. When an
external force (like a collision
or being pressed up against
a wall) pushes the switch
in, it changes its signal to a
digital LOW until the switch is
released. An unpressed switch
is indistinguishable from an
open port.

Note: You can connect
multiple switches to the
same port using a y-cable.

PIC Microcontroller Default
Code Behavior Info:
Usable Ports: Analog/Digital
1-8 (Limit Switch Behavior),
9-10 (Tag Behavior), 11-12
(Autonomous Behavior)
For more info, see Programmed
Behaviors later in this section.

Bumper Switch Sensor

Concepts to Understand, continued

Signal pin is HIGH when switch is open
Pushing switch brings the signal pin voltage to LOW

5 • 64

Sensor

Inventor’s Guide

27
6-

21
78

-E
-0

61
0

Limit Switch Sensor
Signal: Digital
Description: The limit switch
sensor is a physical switch. It
can tell the robot whether the
sensor’s metal arm is being
pushed down or not.

Technical Info:
Type: SPDT microswitch,
configured for SPST
Normally Open behavior.
Behavior: When the limit
switch is not being pushed
in, the sensor maintains
a digital HIGH signal on
its sensor port. This High
signal is coming from the
Microcontroller. When an
external force (like a collision
or being pressed up against a
wall) pushes the switch in, it
changes its signal to a digital
LOW until the limit switch is
released. An unpressed switch
is indistinguishable from an
open port.

Note: You can connect
multiple switches to the
same port using a y-cable.

PIC Microcontroller Default
Code Behavior Info:
Usable Ports: Analog/Digital
1-8 (Limit Switch Behavior),
9-10 (not recommended),
11-12 (Autonomous Behavior)
For more info, see
Programmed Behaviors later
in this section.

Limit Switch Sensor

Concepts to Understand, continued

Pushing switch brings the signal pin voltage to LOW

N. O. Terminal
(Signal pin on wire)

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Shaft Encoders • 1

Shaft Encoders Overview

The Quadrature Shaft Encoder detects the rotation of an axle that passes through
it. It has a resolution of 360 counts per revolution (2 count intervals), and can
distinguish between clockwise and counterclockwise rotation.

The Quadrature Shaft Encoder is an upgrade from the original Shaft Encoder. The original version
contains only one internal sensor, which detects the slits in an internal disc as it spins, giving it a
resolution of 90 counts per revolution. Only one output channel (wire) is needed to transmit the
sensor data to the Vex Microcontroller.

The upgraded Quadrature
Shaft Encoder includes
a second optical sensor
which allows the sensor
to detect if the internal
disk is spinning clockwise
or counterclockwise and
increases the resolution to
360 counts per revolution
(2 count intervals). Two
output channels (wires)
are needed to transmit its
sensor data to the Vex.

Original Shaft Encoder
Only has one output wire.

Quadrature Shaft Encoder
Has two output wires.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Shaft Encoders • 2

Left Encoder,
Top wire

Right Encoder,
Bottom wire

Left Encoder,
Bottom wire

Right Encoder,
Top wire

Left Encoder
(Detects rotation from
Motor on Motor Port 3)

Top wire

Bottom wire

Right Encoder
(Detects rotation from
Motor on Motor Port 2)

The Quadrature Shaft Encoder is fully compatible with the existing Squarebot 2.0 and
3.0 models. Use the following wiring configuration to ensure that the Encoders count “up”
when the robot drives forward, and “down” when the robot moves in reverse. Reversing
the placement of the wires will cause the Encoders to count in the wrong direction (-2, -4,
-6 instead of 2, 4, 6); failing to place the wires in the correct ports will result the Quadrature
Encoder behaving as an original Encoder, or not at all.

Shaft Encoders Wiring Configuration

Top wire

Bottom wire

Left Encoder

Right Encoder

Two Quadrature Shaft Encoders mounted on Squarebot 2.0

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Shaft Encoders • 3

The Quadrature Shaft Encoder is also fully supported by ROBOTC for IFI (v. 1.40 and
up). Use the following instructions and the wiring configuration on the previous page to
correctly configure them within ROBOTC.

Robot > Motors and Sensors Setup
Open the Motors and Sensors Setup
window.

Sensor Configuration
Select A/D Sensors 1-8.

Type “rightEncoder” next
to in2, set its type as a
Quadrature Encoder, and
its second port as in5.

Type “leftEncoder” next
to in3, set its type as a
Quadrature Encoder, and
set its second port as in6.

Press “OK” to complete
the configuration.

Shaft Encoders ROBOTC Setup

Note: The Quadrature Encoders can be
plugged into any of the Analog / Digital
Ports (in1 through in16) and Interrupt
Ports int3 through int6. However, if your
robot is being configured with analog
sensors (Potentiometer, Reflection, Light)
as well, the Encoders must be plugged
into higher port numbers for them to

ac
ce

ss
or

ie
s

sensor accessories

Optical Shaft Encoder Kit

Optical Shaft Encoder Kit • 1

For More Information, and additional Parts & Pieces refer to:

www.VexRobotics.com

Limited 90-day Warranty
This product is warranted by Innovation First against manufacturing defects in material and workmanship under normal use
for ninety (90) days from the date of purchase from authorized Innovation First dealers. For complete warranty details and
exclusions, check with your dealer.

Innovation First, Inc.
1519 IH 30 W
Greenville, TX 75402

08/07

Basic Optical Shaft Encoders are commonly used for position
and motion sensing. Basically, a disc with a pattern of cutouts
around the circumference is positioned between an LED and a light
detector; as the disc rotates, the light from the LED is blocked in a
regular pattern. This pattern is processed to determine how far the
disc has rotated. If the disc is then attached to a wheel on a robot,
it is possible to determine the distance that wheel traveled, based
on the circumference of the wheel and the number of revolutions it
made.

With the Quadrature Encoder, there are 2 output channels. Only
one output can be used as a basic Optical Shaft Encoder. The
term quadrature refers to the situation where there are two output
channels; that is, two square waves 90 degrees out of phase with
each other, being outputted by the unit. The two output channels of
the Quadrature Encoder can be used to indicate both position and
direction of rotation.

YOU MUST HAVE A
PROGRAMMING KIT
TO USE THIS SENSOR!

Optical Shaft Encoder x 2

Screw x 4 (8-32, 3/8”) Keps Nut x 4

ac
ce

ss
or

ie
s

sensor accessories

Optical Shaft Encoder Kit, continued

Optical Shaft Encoder Kit • 2

For More Information, and additional Parts & Pieces refer to:

www.VexRobotics.com

Technical overview
The Optical Shaft Encoder uses an infrared light sensor to detect
illumination from an infrared LED passing through slots cut in
the circumference of a rotating wheel.

From basic geometry, we know that the circumference of a circle is
equal to (pi) times the diameter of the circle.

The distance travelled by a wheel, then, is simply the circumference of
the wheel times the number of revolutions the wheel has made.

For a standard wheel in the Vex Inventor’s kit, the diameter is 2.75”.
So the distance the wheel travelled would be:

1

x π (pi = approx. 3.14)

circumference

distance = (circumference) x (number of revolutions)

distance = 8.64” x (number of revolutions)

diameter of wheel

=

ac
ce

ss
or

ie
s

sensor accessories

Optical Shaft Encoder Kit, continued

Optical Shaft Encoder Kit • 3

For More Information, and additional Parts & Pieces refer to:

www.VexRobotics.com

Technical overview continued
By knowing how many slots are cut into the encoder wheel, we can determine how many
revolutions the robot wheel has made based on the number of times the light sensor has
picked up illumination from the LED. The encoder wheel included in this kit has 90 slots.

By mounting a shaft encoder on the axle of one of your robot’s
wheels, you’ll be able to determine how many times that wheel
has rotated. That, in turn, can be used to calculate the distance
the robot has travelled, based on the diameter of the wheel.

The Optical Shaft Encoder can detect up to 1700 pulses per
second, which corresponds to 18.9 revolutions per second and
1133 rpm (revolutions per minute). Faster revolutions will not
be interpreted correctly, resulting in erroneous positional data
being passed to the microcontroller.

This is a digital sensor, which means that the signal it will pass
to the Vex microcontroller will either be high (1) or low (0).
The sensor output is low (0) when the light from the IR LED
passes through a cutout segment of the encoder wheel and falls
on the detector, and high (1) when the light is blocked by an

1

90 tick marks (pulses) = 1 complete revolution

???????????? ????????????

??
??

??
? ?

??
???????????????????

opaque segment of the
encoder wheel. This
means that the Vex
microcontroller will be
receiving a string of 1’s
and 0’s as your robot
moves. The string of
1’s and 0’s will then
be interpreted by your
program and used to
determine the robot’s
actions.

ac
ce

ss
or

ie
s

sensor accessories

Optical Shaft Encoder Kit, continued

Optical Shaft Encoder Kit • 4

For More Information, and additional Parts & Pieces refer to:

www.VexRobotics.com

With the Quadrature Encoder, you will use both outputs (Channel 1 and
Channel 2) to determine of the direction of rotation. The channels are
separated in phase by 90 degrees as shown below.

											

				
											

				
											

									 	 	

							

For example, if channel 1 leads channel 2, the wheel is rotating clockwise.
Likewise, if channel 2 leads channel 1, the wheel is rotating counter-
clockwise. By monitoring the relative phase and number of pulses of
channel 1 and 2, you can determine how fast, how far, and what direction
your robot is traveling.

Reprogramming your microcontroller to read the sensor
You’ll need to plug your shaft encoder into any port in the Interrupt bank on
the Vex Microcontroller. Depending on your specific application, you may be
able to use any port in the Analog/Digital bank. Note that the connector is
keyed to fit into the microcontroller port in a specific orientation; plugging it
in backwards could damage or even destroy your sensor.

In order for your robot to be able to read the sensor, you will have to
reprogram the microcontroller. Sample code to help you get started is
available on the Vex website.

2

Channel 1

Channel 2
90°

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Potentiometers • 1

The Potentiometer is used to measure the angular position of the axle or shaft passed through
its center. The center of the sensor can rotate roughly 265 degrees and outputs values ranging
from 0-1023 to the Vex Microcontroller.

When mounted on the rotating shaft of a moving portion of the robot, such as an
arm or gripper, the Potentiometer provides precise feedback regarding its angular
position. This sensor data can then be used for accurate control of the robot.

The Potentiometer can be attached
to the robot using the mounting arcs
surrounding the center of the sensor.
The arcs provide flexibility for the
orientation of the Potentiometer,
allowing the full range of motion to
be utilized more easily.

Mounted Potentiometer
Here, the Potentiometer is mounted on
Squarebot 3.0. It provides feedback
regarding the position of the movable arm.

CAUTION! When mounting the
Potentiometer on your robot, ensure that
the range of motion of the rotating shaft
does not exceed that of the sensor. Failure
to do so may result in damage to your
robot and the Potentiometer.

Gear it Up
If the range of motion is too
large for the Potentiometer,

 try developing a gear train that
would allow you to measure

the rotation of the shaft.

Note: Your sensor feedback
will lose some resolution.

Potentiometers Overview

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Potentiometers • 2

The Potentiometer is fully supported by ROBOTC for IFI (v. 1.4 and up). Use the following
instructions and to correctly configure one within ROBOTC.

Robot > Motors and Sensors Setup
Open the Motors and Sensors Setup
window.

Sensor Configuration
Select A/D Sensors 1-8.

Type a Name for your
sensor next to one of the
ports, and set it as Type
“Potentiometer”.

Press “OK” to complete
the configuration.

Note: The Potentiometer can be
plugged into any of the Analog / Digital
ports (in1 through in16). Any digital
sensors (Limit Switches, Bumper
Switches, Encoders, Ultrasonic
Rangefinders) must be used in higher
Port numbers for them to be configured
correctly.

Potentiometers ROBOTC Setup

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Potentiometers • 3

Potentiometers Sample Code

bIfiAutonomousMode = false;	 //Enable Radio Control mode
while(true)			 //Loop forever
{
	 if(vexRT[Ch5] == 127)	 //If the top Ch5 button is pressed...
	 {
		 if(SensorValue[armPotentiometer] < 900) //If the Potentiometer
		 {				 //has not reached its maximum point...
			 motor[port6] = 31;	 //turn the motor on forward. 	
		 }
		 else 			 //If the Potentiometer has reached
		 {				 //its maximum point...
			 motor[port6] = 0;	 //turn the motor off.
		 }
	 }
	 if(vexRT[Ch5] == -127)	 //If the bottom Ch5 button is pressed...
	 {
		 if(SensorValue[armPotentiometer] > 550)	//If the Potentiometer
		 {				 //has not reached its minimum point...
			 motor[port6] = -31;	 //turn the motor on in reverse.
		 }
		 else			 //If the Potentiometer has reached
		 {				 //its minimum point..
			 motor[port6] = 0;	 //turn the motor off.
		 }
	 }
}

Limiting Arm Movement with the Potentiometer
This code allows the rotating arm of a robot to be remote controlled using the Ch5 rear
buttons on the Radio Control Transmitter. The Potentiometer is used to prevent the motor
from spinning once the arm has reached its minimum and maximum points.

ac
ce

ss
or

ie
s

sensor accessories

Potentiometer Kit

Potentiometer Kit • 1

For More Information, and additional Parts & Pieces refer to:

www.VexRobotics.com

Limited 90-day Warranty
This product is warranted by Innovation First against manufacturing defects in material and workmanship under normal use for ninety (90)
days from the date of purchase from authorized Innovation First dealers. For complete warranty details and exclusions, check with your dealer.

Innovation First, Inc.
1519 IH 30 W
Greenville, TX 75402

10/07

The Vex Potentiometer will keep things ‘on the level’. Use this
sensor to get an analog measurement of angular position. This
measurement can help to understand the position of robot arms,
or other mechanisms. To effectively utilize this sensor, users are
required to use the Vex Programming Kit.

The Potentiometer is designed with a “D-hole” in the center. This hole should slide easily over
the Vex square shafts. The Potentiometer also includes (2) “arcs” which are 1/2” from the
center hole; these arcs are used for mounting the Potentiometer to the robot structure.

The mounting arcs allow for 90-degrees of adjustment to the Potentiometer position. Since the
Potentiometer has limited travel, it is important to ensure that the shaft that is being measured
by the Potentiometer does not travel more than 260-degrees (the Potentiometer can only move
mechanically about 265-degrees ± 5 and can only measure electrically 250-degrees ± 20).
The adjustment arcs allow the Potentiometer’s “range of motion” to be repositioned to match
the shaft’s range of motion. To measure the motion of something which moves more than
230-degrees, try gearing down the shaft’s motion to a secondary shaft (this secondary shaft will
move less distance) and then measure this secondary shaft.

YOU MUST HAVE A
PROGRAMMING KIT
TO USE THIS SENSOR!

(4x) 1/2” Long
Threaded Beam

(4x) 8-32 x 1/2” Long
Mounting Screws

(4x) 8-32 x 1/4” Long
Mounting Screws

(2x) Potentiometer
Assembly

ac
ce

ss
or

ie
s

sensor accessories

Potentiometer Kit, continued

Potentiometer Kit • 2

For More Information, and additional Parts & Pieces refer to:

www.VexRobotics.com

Slide the Potentiometer down the shaft being measured, and ensure that it sticks out of
the Potentiometer a little bit on the far side. Mount the Potentiometer using the provided
hardware. Ensure the Potentiometer is centered on the shaft and that there is no mechanical
bind BEFORE tightening the mounting screws.

The Potentiometer (or Pot for short) describes an electrical device in which the user can
adjust the resistance. As the resistance of the sensor changes, a varying voltage is created
and thus the sensor acts as a variable voltage divider. This varying analog voltage can be
measured by the Vex Controller and is proportional to the position of the shaft connected
to the center of the Pot. This is how you obtain an analog measurement of an angular
position.

Before you can use the Potentiometer, you must reprogram your Vex Controller to read
the varying voltage of the sensor on the corresponding port you are planning on connecting
to. How to write/change your code to read the varying voltage is not covered in these
instructions. We suggest searching our Forum for help at www.vexforum.com. To connect
the Potentiometer Sensor to the Vex Controller, you plug the Sensor Connector into any
port in the Analog/Digital Bank on the Vex Controller, typically you start with the 1st
position. Note that the Connector is keyed to fit into the Vex Controller Port in a specific
orientation; plugging it in backwards could damage your Sensor.

Robot Structure
(not included)

Shaft being measured
(not included)

1/2” Mounting
Screw (2x)

Potentiometer
Assembly

1/2” Threaded
Beam (2x)

1/4” Mounting
Screw (2x)

Inventor’s Guide insert

ac
ce

ss
or

ie
s

ac
ce

ss
or

ie
s

sensor accessories

 line follower kit • 1

Line Follower Kit
A line follower consists of an infrared light sensor and an
infrared LED. It works by illuminating a surface with
infrared light; the sensor then picks up the reflected
infrared radiation and, based on its intensity, determines
the reflectivity of the surface in question. Light-colored
surfaces will reflect more light than dark surfaces, resulting
in their appearing brighter to the sensor. This allows the
sensor to detect a dark line on a pale surface, or a pale line
on a dark surface.

You can use a line follower to help your robot navigate along
a marked path, or in any other application involving
discerning the boundary between two high-contrast surfaces.
A typical application uses three line follower sensors,
such that the middle sensor is over the line your robot is
following.

line follower x 3

INSERT THESE PAGES
at the back of the
Sensor Chapter in your
Vex Inventor’s Guide.

screw x 5 (8-32, ³/8") keps nut x 5

© 2005 Innovation One. All Rights Reserved. Vex and Vex Robotics Design System are trademarks of Innovation One.

line follower kit

Limited 90-day Warranty
This product is warranted by Innovation One
against manufacturing defects in material and
workmanship under normal use for ninety (90)
days from the date of purchase from authorized
Innovation One dealers. For complete warranty
details and exclusions, check with your dealer.

Innovation One, Inc.
350 North Henderson Street
Fort Worth, TX 76102

11/04

Printed in China

0405

mounting bar x 1

YOU MUST HAVE A
PROGRAMMING KIT
TO USE THIS SENSOR!

line follower kit • 2 Inventor’s Guide insert

ac
ce

ss
or

ie
s

sensor accessories

ac
ce

ss
or

ie
s

line follower kit, continued

Course correction
based on sensor
reading

1 Technical overview
 This is an analog sensor, meaning that its output covers a range of values
 (in this case, from zero to five volts) rather than being only high (five volts)
 or low (zero volts), as is the case for a digital sensor. This range of output
 from zero to five volts is sent to the microcontroller, which reads it as a range
 of integer values from 0 to 255. [For more detail, refer to the Sensors chapter
 in your Vex Inventor’s Guide.]

 For this particular sensor, sensor output will be low (around 0) when the infrared
 light bounces back to the detector – in other words, when the surface is pale or
 highly reflective – and high (around 255) when the light is absorbed and does not
 bounce back.

 We can then set a threshold value in our code to act as a trigger for behaviors.

 From this basic premise, we can build more complicated behaviors. For example, if you
 have three line sensors on the front of your robot [hint: use the mounting bar included in
 your kit!], then you can program your robot to follow a white line on a black surface.
 LineFollower_Middle should always see white, and the other two — LineFollower_Left
 and LineFollower_Right — should always see black. If LineFollower_Left starts seeing
 white, then your robot needs to steer back to the left. If LineFollower_Right starts
 seeing white, then your robot needs to steer back to the right.

Maximum
Illumination

Minimum
Illumination

0V 5VAnalog Value =

0 255Integer Value =

0 255 255 255 0 255 255 255 0

line on left
steer left

line in middle
steer straight

line on right
steer right

Line followers, top down view

Inventor’s Guide insert

ac
ce

ss
or

ie
s

sensor accessories

 line follower kit • 3

1 Technical overview, continued
 The optimal range for the line follower is approximately 0.02 to 0.25 inch.
 The minimum line width it can detect is 0.25".

 Sensor output will be low (0V) when the infrared light bounces back to
 the detector – in other words, when the surface is pale or highly
 reflective – and high (+5V) when the light is absorbed and does not
 bounce back.

line follower kit, continued

Minimum
¼"

1/8" optimum

HELPFUL HINT:
Because the line follower uses an infrared LED to illuminate its target
and an infrared sensor to detect the reflected light, it will actually
work in low-light conditions or even in the dark! However, this
also means that it can easily become saturated — in other words,
everything will look white to it, like an over-exposed photograph — in
environments where there is a lot of infrared radiation. You’ll find
environments like this in competition settings where tungsten lights are
used for illumination. To avoid saturating the infrared sensor,
consider mounting it underneath the robot or adding a cardboard
shield to block ambient radiation.

line follower kit • 4 Inventor’s Guide insert

ac
ce

ss
or

ie
s

sensor accessories

line follower kit, continued

2 Reading data from the line follower:
 Reprogramming your microcontroller to read the sensor
 Start by plugging your line follower into any port in the Analog/Digital
 bank on the Vex Microcontroller. Note that the connector is mechanically
 keyed to fit into the microcontroller ports in a specific orientation.
 Plugging it in backwards could result in damage to your sensor!

 In order for your robot to be able to read the sensor, you will have to
 reprogram the microcontroller. Sample code to help you get started is
 available on the Vex website. Refer to the Programming chapter in your
 Vex Inventor’s Guide for information on how to add or change code.

Inventor’s Guide insert

ac
ce

ss
or

ie
s

ac
ce

ss
or

ie
s

sensor accessories

 light sensor kit • 1

Light Sensor Kit
With a light sensor, you can add a whole new range of
capabilities to your robot. Design a simple tracker that
follows the beam of a flashlight, or use a light sensor to help
your robot to avoid getting stuck under furniture by
making it steer away from shadows. Conserve battery power
by programming your robot to shut down in the absence of
light. You can even give your robot color vision by putting
colored filters on different light sensors!

light sensor x 1

INSERT THESE PAGES
at the back of the
Sensor Chapter in your
Vex Inventor’s Guide.

keps nut x 2

© 2005 Innovation One. All Rights Reserved. Vex and Vex Robotics Design System are trademarks of Innovation One.

light sensor kit

Limited 90-day Warranty
This product is warranted by Innovation One
against manufacturing defects in material and
workmanship under normal use for ninety (90)
days from the date of purchase from authorized
Innovation One dealers. For complete warranty
details and exclusions, check with your dealer.

Innovation One, Inc.
350 North Henderson Street
Fort Worth, TX 76102

11/04

Printed in China

0405

YOU MUST HAVE A
PROGRAMMING KIT
TO USE THIS SENSOR!

screw x 2
(8-32, ³/8")

light sensor kit • 2 Inventor’s Guide insert

ac
ce

ss
or

ie
s

sensor accessories

ac
ce

ss
or

ie
s

light sensor kit, continued

1 Technical overview
 The light sensor uses a Cadmium Sulfoselenide photoconductive
 photocell, or CdS cell for short. A CdS cell is a photoresistor, meaning
 that its resistance value changes based on the amount of incident light.

 This is an analog sensor, so its output covers a range of values
 (in this case, from zero to five volts) rather than being only high (five
 volts) or low (zero volts), as is the case for a digital sensor. This range of
 outputs from zero to five volts is sent to the microcontroller, which reads
 it as a range of integer values from 0 to 255. [For more detail, refer to
 the Sensors chapter in your Vex Inventor’s Guide.]

 For this particular sensor, a low value (around 0) corresponds to very
 bright light, and a high value (around 255) corresponds to darkness.

 We can then set a threshold value in our code to act as a trigger
 for behaviors.

 From this basic premise, we can build more complicated behaviors. For
 example, if you have two light sensors on the front of your robot (one on
 the left, and one on the right), then you can program your robot to follow
 a bright light by telling it to steer toward bright light (in the direction
 of the sensor that is receiving low values) and away from darkness
 (away from the direction of the sensor that is receiving high values).

Maximum
Illumination

Minimum
Illumination

0V 5VAnalog Value =

0 255Integer Value =

ac
ce

ss
or

ie
s

Inventor’s Guide insert

ac
ce

ss
or

ie
s

ac
ce

ss
or

ie
s

sensor accessories

 light sensor kit • 3

2 Detecting light level:
 Reprogramming your microcontroller to read the sensor
 Start by plugging your light sensor into any port in the Analog/Digital
 bank on the Vex Microcontroller. Note that the connector is keyed to fit
 into the microcontroller port in a specific orientation; plugging it in
 backwards could damage or even destroy your sensor.

 In order for your robot to be able to read the sensor, you will have to
 reprogram the microcontroller. Sample code to help you get started is
 available on the Vex website. Refer to the Programming chapter in your
 Vex Inventor’s Guide for information on how to add or change code.

light sensor kit, continued

1 Technical overview, continued
 The light sensor has a usable range of 0 to 6 feet, so it can
 distinguish a light source from ambient light up to six feet
 away; a light source more than 6 feet away will blend into the
 ambient light and be lost. The range is dependent on the
 intensity of the light source as well as the intensity of the
 ambient light in the environment. The range will be greater
 for a very bright point source in a very dark room, but
 dramatically reduced for a flashlight outdoors on a
 sunny day.

 This light sensor is sensitive to visible light only; it will not
 provide useful data for infrared or ultraviolet sources.

6'

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Glossary • 1

Actual measurements: Data that is found by making measurements, as opposed to predictions.

All-Purpose: Usable for a number of different tasks.

Algorithm: A systematic method for solving a certain kind of problem that is guaranteed to always give a correct answer.
Sometimes used more generally to mean any well-defined, systematic method of doing something.

Amplitude: The difference between the “highest” or “lowest”
point of a wave, and the “rest” or “zero” level. For a sound wave,
the difference in air pressure between the most-compressed
“peak” areas of the wave and undisturbed air (which is represented
as the middle “zero” line on a graph). Note that amplitude is NOT
the difference between the highest point and the lowest point on
the wave – amplitude is measured from the top to the middle,
or the bottom to the middle, but not top to bottom.

Autonomus: Something that can work by itself. Often used as a
synonym for “robotic.” For example, an autonomous harvester is one that
can harvest without a human operator.

Autonomous Navigation: See Navigation, Autonomus.

Behaviors: Anything a robot “does,” including both observable actions
(e.g. move forward for 10 cm) and internal actions (e.g. add 1 to a
variable in the program). Complex behaviors are often made of numerous
simpler behaviors put together; moving through a maze is a behavior composed of smaller moving and turning behaviors.

Best-fit Line: A straight line that best represents all the data on a graph. It is also known as a trendline. A line of best fit is
usually written in a form called slope-intercept, containing two variables, x and y.

Brainstorming: The process of coming up with ideas. Good brainstorming in teams requires team members to encourage
different, unexpected and unusual approaches to a problem, and to build on each others’ ideas.

Budget: See Resources. In projects, the amount of money which is available to spend on completing the project, and, by
extension, the amount of other resources available. Budgeting money, time and human resources adequately is essential
to the successful completion of a project.

Bumper Sensor: A Touch Sensor used as a bumper, activated when a robot bumps into another object. A bumper sensor
can be used for obstacle detection.

Calibrate: To set the correct position, value or capacity of something. Calibrating the Sound or Light Sensor will set
minimum and maximum values for it.

Caliper: An instrument using converging or diverging arms to determine the external or internal width of an object.

Center of Mass: The “average” location of all the mass in an object. In many cases, you can make predictions about the
entire object’s behavior based on the location of its center of mass alone.

Circumference: The distance around the edge of a circle. Equal to diameter times �.

Amplitude

Distance

P
re

ss
ur

e

Amplitude
Wave
Zero Line

Glossary

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Glossary • 2

Glossary continued
Code: General term for any command or group of commands in a program.

Comment: A written note in the program that explains something about that portion of the program. Comments do not
actually change the way the robot behaves, but are very important to the programmer’s ability to remember what the code
does.

Commercialize: To bring into the commercial market. In a robotics project, commercialization (if it occurs) begins with the
completed robotic prototype and ends with a product which is mass-produced and sold on the commercial market.

Communication: The process of sending and/or receiving information by two or more parties.

Communication, One-way: One-way communication occurs when one of the two or more communicating parties
functions only as the sender of information, and the other(s) only as the receiver(s) of information.

Communication, Remote: Remote communication is communication occurring over some distance, and typically by a
specialized technology, like Bluetooth.

Communication, Two-way: Two-way communication occurs when all of the communicating parties function as both
sender(s) and receiver(s) of information.

Compiler: The compiler is a part of the VEX Programming Software that takes the code in a program and converts them
into machine language that the VEX brick can understand and run. The compiled code is not exactly the same as the
code written on your computer; this is why you cannot load the program back onto the computer once it is compiled and
downloaded to the VEX.

Condition (experimental): A portion of an experiment corresponding to one specific setting of the independent variable. If
your experiment involves large wheels and small wheels, for instance, the part of the experiment where you use the large
wheels is the “large wheel condition.” Condition can also refer to the setting of the variable itself (“large wheels”). See also
Conditional Statement (programming).

Conditional Statement (programming): A programming block that chooses to run different pieces of code, depending
on some user-defined factor (for example, it may choose to run straight ahead if the robot does not detect an obstacle, but
turn to the left if there is a nearby object).

Cross-Multiplication: A mathematical procedure used to solve an equation
of the form X/A=Y/B (one fraction equals another fraction, with no other terms
outside the fractions). The result of cross-multiplication in the example to the
right is BX=AY.

Crystal: Crystals are the channels used to send signals from the transmitter
to the reciever. The transmitter’s frequency module and the matching receiver
crystal determine the control frequency for a robot. Each robot operating at the
same time should be on a different control frequency.

Data: Factual information, like the weight of a robot or the value of a sensor.
Note that the word data is plural. A single piece of factual information is a datum.

Data Analysis: The process of manipulating data to increase understanding of a certain topic or issue.

Data Flow: The process of moving data around inside of a program.

=

BX AY=

X

A

Y

B

Cross-Multiplication

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Glossary • 3

dB and dBA: dB and dBA are modes of the Sound Sensor that refer to different frequency sensitivity settings. When used
this way, the terms “dB” and “dBA” are not units! dB mode produces readings that are simply based on how much sound is
picked up by the Sound Sensor. dBA mode also gives readings based on the amount of sound detected, but adjusts those
readings so that the displayed values more closely match the pattern of human hearing, which is less sensitive to very high
and very low frequencies. Just as a human would perceive these sounds to be quieter, dBA mode will give lower readings
for those frequencies even if the actual amount of sound is the same.

Decibel: A relative unit of measure commonly used with reference to the amplitude (loudness) of sound. In sound, 0 dB is
the quietest sound a person can hear (measured in micropascals, a very small unit of pressure, since sound is based on
pressure waves). Every 10 dB increase then means that the sound gets ten times louder. 10 dB is ten times louder than
the quietest sound you can hear. 20 dB is ten times louder than that. 30 dB is ten times louder than 20 dB, and is about the
level of noise in a quiet room. Note that the Sound Sensor does not measure in decibels, even when its mode is set to dB.
Instead, it measures a % value of the loudest sound it can detect.

Demonstration(demo): An event in which a project prototype demonstrates some or all of its capabilities for an audience,
which usually includes the project sponsors.

Dependent Variable: In an experimental setup, the variable whose value is measured to see whether it was affected by a
change in the independent variable. Also called the responding variable

Design: Both the process of originating and developing a plan for a new object, like a project prototype, and the plan itself.

Design Canidate: An idea selected for evaluation with a group of other ideas, the most applicable of which will become a
prototype.

Design Review: A process in which a design or designs are evaluated, usually by the team or experts.

Design Review, External: A process by which outside parties, particularly those who are funding the project, review the
concept that has been chosen as the prototype and offer feedback and suggestions.

Design Review, Internal: A process designed to facilitate a fair and efficient comparison of all available design ideas, so
that the best one can be chosen for continued development.

Design Specification: A document created to help fully understand the problem before beginning a solution.

Diameter: The distance “across” the center of a circle from edge to edge. Equal to two times the radius of the circle.

Document: A real or virtual written item which provides information. To document means to provide supporting information,
usually so as to make something easier to reference or modify. For example, a well-documented program will have all
successful versions saved, named and commented descriptively, so that future modifications to the program can be done
as efficiently and accurately as possible.

Downloading: Transferring data (usually a compiled program) from the computer to the VEX. See also Uploading.

Driven Axle: When considering a pair of axles connected by gears, pulleys, or other means, the driven axle is the one
whose movement is an effect of the other’s (rather than the cause). See also Driven Gear, Driving Axle.

Driven Gear: When considering a pair of connected gears, the driven gear is the one whose movement is an effect of the
other’s. If axles are being considered, the driven gear is the gear on the driven axle. See also Driven Axle, Driving Gear.

Driving Axle: When considering a pair of axles connected by gears, pulleys, or other means, the driving axle is the one
whose movement is the cause of the other’s. See also Driving Gear, Driven Axle.

Glossary continued

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Glossary • 4

Glossary continued
Driving Gear: When considering a pair of connected gears, the driving gear is the one whose movement is the cause of
the other’s. If axles are being considered, the driving gear is the gear on the driving axle. See also Driving Axle, Driven
Gear.

Engineering: The study and application of science, mathematics, and technology to find solutions to real-world problems.

Engineering Journal: A notebook which serves as a personal organizer for a project. It should maintain and order
all items related to the project, including research, brainstorming ideas, schedules, daily activities, design reviews,
presentations, etc.

Environmental: Of or pertaining to the environment, sometimes the natural world around us and sometimes the area in
which the robot will be operating.

External Design Review: See Design Review, External

Feedback: See Input. Input, such as what a sensor gives to the VEX. For example, a robot uses Light Sensor feedback to
follow a line. By extension, feedback can also mean human response, both positive and negative. Efficiently gathering and
making use of available human feedback, both internal and external, will tend to help the success of any project.

Follow-up Proposal: A second proposal made to continue work begun in the first. A follow-up proposal typically takes into
account both the successes and the failures of the original project, and is based on new perspectives gained from it.

Funding: Money made available for a specific purpose, like a project.

Frequency: The number of waves that pass by a point in space in a certain
amount of time. For counting purposes, one “wave” is usually considered an
entire cycle from peak to peak (i.e. two “tops” of waves pass by) or trough
to trough (two “bottoms” pass by). Frequency is usually expressed in hertz
(Hz), which is one wave per second.

Gantt Chart: A bar chart that illustrates a project schedule broken into
subschedules for each of the tasks needed to complete the project.

Gear Ratio: The number of times the driving axle in a system must spin to
make the driven axle turn once. With gears, the gear ratio can be found by
counting the number of teeth on the driven gear, and dividing by the number
of teeth on the driving gear.

Gear Train: A series of gears that transmit power between axles.

Gimbal: A mechanical device that allows the rotation of an object in multiple dimensions.

GPS: An acronym which stands for Global Positioning System. A GPS receiver can accurately determine its location
(latitude, longitude and altitude) by processing signals sent by more than two dozen GPS satellites.

Graph: A line or curve representing the variation of one quantity with another.

Graphing: Representing data on a graph.

Hertz: Unit of measurement for the frequency of repeating events, defined as one repetition per second. With sound,
for instance, frequency is the number of pressure waves that travel past a certain point in a certain amount of time...
each time the “peak” of a wave travels by that point, you can count one cycle of the wave. Thus, if ten peaks travel by in
one second, the wave has a frequency of 10 hertz. Many waves travel so quickly that thousands of peaks will go by in a
second, thus the kilohertz (kHz, 1000 Hz) is a frequently used unit also.

Distance

High Frequency
Low Frequency

Pr
es

su
re

Frequency

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Glossary • 5

Glossary continued
Horticulture: Culture or growing of garden plants.

Hypothesis: An educated explanation describing the possible relationship between two or more factors. A good hypothesis
is very specific, providing detailed, useful information. A good hypothesis is also testable, meaning that experimentation
can help to show whether the hypothesis is correct or incorrect (though it cannot ever conclusively prove correctness).

Independent Variable: In an experimental setup, the variable that is set and changed in different experimental conditions
by the experimenter in order to see whether these changes cause a change in the dependent (responding) variable. Also
called the manipulated variable

Innovate: Introduce something new, usually to make an improvement.

Input: See Sensor. Something which is sent to the controller which is used in its program. An input is typically a sensor
value sent by a sensor. An input may also refer to the sensor itself.

Integration: The process of combining or accumulating, usually in a well-ordered and useful way. To integrate sensor data,
for example, would be to combine data from two or more sensors in a useful way. To integrate two parts of a robot would
be to combine them into one machine.

Internal Design Review: See Design Review, Internal.

Inventory: An inventory is the total stock available at a given place and time. To inventory means to list systematically the
items that are available in a particular place or situation, or for a particular purpose.

Irrigation: Bringing water to crops by human effort (in place of, or in addition to, water coming from rainfall or by natural
waterways). An irrigation ditch, for example, is something people dig to channel water onto cropland.

Iterative Development: See Test/Revise/Repeat. The process of repeatedly testing and making improvements to a
product before it is finalized. In this process, multiple iterations of the product are developed, each iteration being closer to
the final product than the last.

LCD (Liquid Crystal Display): A transparent screen containing a light polarizing liquid that is controlled by electric fields to
create visible readouts on some controllers.

Light Sensor: A sensor that detects the presence of certain wavelengths of light and reports the intensity of light back
to the controller. Light Sensors have two modes: Reflected Light and Ambient Light. In Reflected Light mode, the Light
Sensor will shine a red light and look for the amount of that light that bounces back to it off objects in the environment. In
Ambient Light mode, the sensor will not shine the light, instead looking for light that reaches it from other sources.

Library: A collection of programs, or parts of programs, stored to help optimize the programming process. Without a library
of programs, everything a programmer does must be done from scratch. A well-ordered library, on the other hand, enables
a programmer, for example, to track a line by calling a line tracking program from a library, instead of having to place and
configure each icon needed to track a line.

LIDAR: An acronym standing for Light Detection and Ranging; or Laser Imaging Detection and Ranging. An optical remote
sensing technology which measures properties of light to find range and/or other information of a distant target. The most
common method is to send laser pulses into the environment, and determine the distance to various objects by measuring
the amount of time they take to reflect back. Other methods, like measuring the frequency of the reflected light, are also
used. LIDAR is an important and widely used remote sensing and obstacle detection technology for mobile robots.

Limit Switch: A Touch Sensor used to limit the motion of a moving device like a mechanical arm. Limit switches may be
used to provide a precise beginning and end point to mechanical motion.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Glossary • 6

Glossary continued
Linear Regression: See Best-fit Line. The linear function referred to in the phrase linear regression may also be a best-fit
line, or trendline. Regression, in general, is the problem of estimating a conditional expected value.

Logic: A data type that the controller can understand. Logic data has only two possible values, which can be represented
in multiple ways. The value True is often also represented by a 1 or a checkmark, and False is also represented by a 0 or
an X.

Manipulated Variable: See Independent Variable.

Mapping: Making a map. In robotics, mapping usually refers to the ability of an autonomous robot to enter an area, and
navigate, sense and record information in such a way as to allow an accurate map of the area to be constructed.

Marketing: Refers to the process of advertising and selling a product or service. Marketing also refers to bringing the
product or service to the market, where it can be bought or sold.

Marketing Presentation: A marketing presentation is one concerned with marketing a product or service, usually to
potential buyers.

Miner, Continuous: In the mining industry, a large tracked machine that uses moving claws to tear coal loose from
its natural formation and pull it into a large scoop. The continuous miner then transfers the coal to other coal moving
machines.

Mining: The extraction of valuable minerals from the earth. The area where minerals are extracted is called a mine. There
are, for example, coal mines, iron mines, gold mines and uranium mines.

Mining, Longwall: Longwall mining is a form of underground coal mining where a long wall (about 250-400 m long
typically) of coal is mined in a single slice (typically 1-2 m thick). The longwall “panel” (the block of coal that is being mined)
is typically 3-4 km long and 250-400 m wide. The longwall equipment consists of a number of hydraulic jacks, called
chocks, roof supports or shields, which are placed in a long line up to 400 m in length in order to support the roof. An
individual chock can extend to a maximum cutting height of up to 5 m. The coal is cut by a rotating drum with bits called a
shearer that moves along the length of the face in front of the chocks, disintegrating the coal. Continuous miners are used
in longwall mining primarily to open the spaces needed for the longwall machine and chocks.

Monitor: See Receiver, Sender. To watch, or to receive information.

Moition Detector: A sensor that detects motion. It may be quite simple or very complex, and may use a wide variety of
sensors, separately or together.

Multitask: To do more than one thing at once. In the VEX programming software, multitasking is accomplished by creating
a program with more than one task.

Navigation: Directing a vehicle from one place to another.

Navigation, Autonomous: The ability of a robot to get to a pre-determined place without human intervention, sometimes
despite the presence of unknown obstacles, or from an unknown starting point.

Number: Another word for data type that the VEX can understand.

Obstacle Detection: The ability of a robot to detect obstacles in its environment. LEGO robots usually detect obstacles
using a Touch Sensor, an Ultrasonic Sensor, or both.

One-way Communication: See Communication, One-way.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Glossary • 7

Glossary continued
Output: Something which the controller sends. An output is typically power sent to a motor. An output may also refer to the
motor itself, or to sensor values that are displayed or collected in a file.

Peak: The “top” of a wave on a graph. The point of greatest disturbance
from the “rest” state in one direction. See also “trough”.

Percent Error: The percentage that the measured value differs from the
calculated value, which can be determined by the formula (calculated
value – measured value)/calculated value x 100%

Perpendicular: Intersecting at a 90 degree angle.

PERT Chart: An acronym standing for Program Evaluation and Review
Technique, it is a method for analyzing the tasks involved in completing
a given project in order to identify the minimum time needed to complete
the total project.

Point Turn: A turn where one wheel rotates forward and the other rotates backward, causing the robot to sit and spin in
place. Also called a “skid turn” in general robotics.

Ports: The designated areas for connecting sensors and/or motors to the controller. A wire of appropriate length should be
used to connect the controller with each sensor or motor device.

Problem Context: The overall dimensions of the problem, which include exactly what the problem consists of, what
person or group wants the problem solved, what places, situations or people the solution has to function in or with, what
commercial markets, if any, the solution will be marketed in, and what previous efforts have been made to solve the
problem.

Project: A project is a temporary endeavor undertaken to create a unique product or service. A project is typically worked
on by a project team, for a particular customer, client or sponsor who funds it, and has certain goals, a schedule and a
budget.

Project Management: The process of managing a project. Good project management includes breaking down the project
work into tasks, assigning responsibilities for them to team members, ensuring that adequate communication takes place
both within the team and between the team and any other groups or people involved, scheduling the tasks to ensure the
project meets its deadline(s), and budgeting resources in such a way that all necessary work can occur before any of the
resources run out.

Project Manager: The member of the project team who manages the project, especially the schedule and budget.

Proposal: See Request for Proposals. A properly accomplished proposal educates the prospective client about the full
nature of his or her need, and argues as well as possible that the proposal writer’s group can meet it. Sponsors sometimes
issue a Request for Proposals, commonly referred to as an RFP, in order
to invite proposals on a particular subject.

Protoype: Literally, first of its kind. Creating a working prototype, that is,
creating a first-of-its-kind robot that accomplishes the task(s) it is meant to,
is the typical goal of a robotic project.

Protractor: A device used for measuring angles.

Distance

Pr
es

su
re

Peak
Trough
Rest State

Peak

Protractor

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Glossary • 8

Glossary continued
Pseudocode: is a compact and informal description of a computer programming code. It is a hybrid language which
combines the features of the programming language with the native language of the person writing the program.

RADAR: See LIDAR. An acronym standing for Radio Detection And Ranging, it is a system that uses radio waves to
detect, determine the distance and/or speed of objects. It functions by bouncing radio waves off of objects and timing how
long it takes the reflected wave to come back to a receiver.

Radius: The length of the line segment that joins the center of a circle with any point on its circumference. Equal to half the
diamater of the circle.

Receiver: See Monitor, Sender. A receiver gets messages sent by the transmitter.

Request for Proposals (RFP): See Proposal. Clients sometimes issue a Request for Proposal, commonly referred to as
an RFP, on a particular subject. These RFPs are issued to find a provider for a new product or service, one that typically
addresses a particular problem or set of problems.

Research: The process of gathering information pertaining to a subject. In a project, thorough research investigates the
nature, limits and complicating factors involved in the problem the project seeks to solve, and all previous attempts to
address it. Lack of adequate research is often a cause for a project failing to meet its goals.

Resource: Any limited good that can be drawn upon to complete a project. Projects typically are limited in money, time
and human resources, and need a plan to allocate them carefully in order to meet project goals.

Responsibility Matrix: After the project work has been divided into tasks, a responsibility matrix may be created which
assigns responsibility for these tasks to project members. A well-constructed responsibility matrix will ensure both that
no tasks necessary for successful completion of the project are left undone, and also that there is no duplication of effort
(more than one member, or team of members, working on the same task in an uncoordinated way.)

Responding Variable: See Dependent Variable.

Revise: See Iterative Development, Test/Revise/Repeat. To remake or improve based on testing and or feedback. Test/
revise/repeat is the typical project pattern. Testing reveals both what works and what doesn’t. Revision maintains what
works while trying to fix what doesn’t work. Revision is done after feedback from people as well as testing.

Right Angle: A 90 degree angle.

Robot: A machine that is able to interact with and respond to its environment in an autonomous fashion. A robot is
characterized by three central capabilties: the ability to Sense, the ability to Plan, and the ability to Act. See Sense, Plan,
Act.

Rotation Sensor: A device that measures the amount of rotation of a certain piece or object.

Rubric: A method and tool for evaluation, consisting of a chart of criteria for evaluation of work. It allows for standardized
evaluation according to specified criteria, making evaluation more transparent.

Scatterplot: Used to illustrate the relationship between two aspects of the same set of data. One aspect is represented by
the X coordinate (horizontal location) and the other is represented by the Y coordinate (vertical location) of the data point

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Glossary • 9

Glossary continued
Scanning: See Mapping. The act of examining sequentially, part by part. Scanning may be part of an automated process
which searches for either a single object or a type of object. It may also be part of the process whereby mapping is
accomplished. In either case, the robot scans part of the area to be examined, gathering sensor input allowing a part of a
map to be constructed, or for the presence or absence of the desired object(s) to be determined. Then it proceeds to the
next part of the area, continuing in a systematic fashion until all parts of the area have been scanned and a map of the
entire area can be constructed, or the presence or absence of the desired object(s) in the area can be determined.

Schedule: In project management, a schedule consists of a list of a project’s terminal elements, or deadlines, with
intended start and finish dates. Gantt and PERT Charts are important project management scheduling tools.

Scientific Inquiry: The process by which scientists seek to ask and answer questions about the world. Evidence, models,
and logical explanation are all key parts of the process. Inquiry is NOT a rigid series of steps, but rather a fluid cycle of
proposing, examining, and revising explanations to find the best answer to a question.

Sender, Remote: Used to sense something at a distance. Remote communication may be used to transfer the remote
sensor’s data.

Sense-Plan-Act: The three characteristic capabilties that define a robot. The robot must be able to “Sense” things about
its environment, it must be able to “Plan” an appropriate response to those factors, and it must be able to “Act” accordingly.

Sensor: A device that detects some important physical quality or quantity about the surrounding environment, and
conveys the information to the robot in electronic form.

Slope Intercept: See Best-fit Line. A slope-intercept equation contains two variables, x and y, usually in the form y = mx +
b. The quantity m describes the slope of a line on a graph, and b describes the y-intercept.

Sound Sensor: A sensor that detects sound waves and reports the amount of sound back.

Sound wave: A “moving” pattern of high and low pressure in air (or other medium), perceived as sound.

SPA: See Sense-Plan-Act.

Specifications: A specification is a set of requirements. Normally, a specification is the specific set of (high level)
requirements listed by the sponsor, which a project must meet. A project specification may be that a robot can be no
bigger than 2 feet long, or that it must be able to travel at over 30 km an hour, for example.

Speed: The rate at which an object is moving. The rate of change an object’s position over time. Calculated by dividing the
distance an object moves by the amount of time it took to move.

STEM: Acronym for the closely related fields of Science, Technology, Engineering, and Mathematics.

Stimulus: Anything that may have an impact on a system; an input to the system. A program may wait for a given stimulus
(like the Touch Sensor being pressed) to execute a specific behavior (like stopping).

Stimulus-Response: Action made in response to a stimulus. The stimulus-response cycle enables robots to interact
effectively with their environment.

Strategy/Strategize: A master plan for accomplishing certain goals. To strategize means to come up with a plan to meet a
goal.

Support Polygon: The imaginary polygon formed by connecting all the points where an object touches the ground.
This polygon marks the boundaries of where the object’s Center of Mass can be while remaining stable. If the Center of
Mass is not directly over the interior of the Support Polygon, the object will fall over.

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Glossary • 10

Glossary continued
Swing Turn: A turn where one wheel rotates and the other stays in place, causing the robot’s body to “swing” around the
stationary wheel.

Task: A discrete unit of work. A task may refer to a human activity like designing a drivetrain, or a robotic one, like mapping
a coal mine. Effectively breaking down tasks is a key to success both for a human project and for a robotic program

Teamwork: The process of working together in team. Effective and cooperative teamwork is an essential quality of a
successful project.

Test/Revise/Repeat: See Iterative Development, Revision. Test/revise/repeat is the typical project pattern. Testing reveals
both what works and what doesn’t. Revision maintains what works while trying to fix what doesn’t. Repeat means that
testing and revision are done continuously.

Text: Text includes words, letters, numbers, punctuation, spaces or a combination of all. This data type is often also called
a “string.”

Theoretical Measurement: A predicted value for a measurement. Usually, these predictions are made by taking a real
measurement, then using a hypothesis or theory (hence the name “theoretical”) to predict what the value should be under
slightly different conditions. After this prediction is made, the real measurement is usually taken, and compared against the
theoretical one to see how well the prediction matched the real outcome.

Threshold: A “cutoff” or dividing line between two regions. One common use for thresholds is to divide the hundreds of
possible sensor readings from a sensor (a Light Sensor can give
a value anywhere from 0-100, for example) into two manageable
categories. For the Light Sensor, this would mean setting a
threshold value somewhere between 0 and 100, then declaring that
all values above the threshold are now “light” while all values below
the threshold are now “dark.” A light sensor reading can then be
easily categorized and handled appropriately. The threshold value
can be chosen in any way desired, but it is conventional to choose
a value exactly halfway between two known extremes (e.g. halfway
between a very dark surface and a very light one).

Time Management: The process of managing time, a limited resource in any project. Project time management tools are
schedules, timelines, Gantt Charts and PERT Charts.

Timeline: A visual representation of a process or series of events. It helps chart the progress of the project.

Torque: Roughly speaking, torque is the rotational equivalent of force. Whereas force causes an object to speed up or
slow down its (linear) motion, torque causes an object to speed up or slow down its rotation. A motor that generates more
torque will let the robot speed up or slow down more rapidly, as well as handle larger tires, heavier loads, and steeper
inclines.

Touch Sensor: A sensor that detects physical contact (touch) and reports back to the controller whether its contact area is
being pushed in or not.

Trendline: See Best-fit Line.

Trough: The “bottom” of a wave on a graph. The point of greatest disturbance from the “rest” state in one direction (the
one that corresponds to “downward” on the graph). See also “peak”.

Threshold

Read as “Dark” Read as “Light”

Reference

Project Lead The Way © and Carnegie Mellon Robotics Academy © / For use with VEX® Robotics Systems Glossary • 11

Glossary continued
Two-way Communcation: See Communcation, Two-way

Ultrasonic Sensor: A sensor that measures distance by emitting ultrasonic sound waves, then measuring how long it
takes them to echo back off of objects or surfaces in the environment. The Ultrasonic Sensor then reports the calculated
distance back to the controller.

Uploading: Transferring data (usually gathered data) from the robot controller to the computer. See also Downloading.

Variable (mathematics): A stand-in for a not-yet-known value in a mathematical equation. Once a variable’s value has
been found, the value can be substituted anywhere in place of the variable.

Variable (experimental): A factor that is either manipulated or measured during the course of an experiment. See also
Independent Variable, Dependent Variable.

Variable (programming): A “container” for a value. The programmer may choose to store a value (perhaps a sensor
reading) in the variable, and use it in a later operation (display it to the screen at the end of the program, for instance). The
programmer may also choose to perform mathematical operations on the stored value, such as adding 1 to it.

Wavelength: The distance between successive equivalent points
on a wave. For example, the distance between two neighboring
peaks on the wave.

While Loop: is a control flow statement that allows code to be
executed repeatedly based on a given boolean condition.

Worm Gear: A special type of gear that uses a screw-like shaft
and a wheel with slanted teeth to reduce speed or transmit torque
between nonparallel axles. Also has the special properties of
being a “one-way” gear and having effectively only one tooth for
gear ratio calculations.

Wavelength

Distance

Pr
es

su
re

Wavelength

Glossary • 121

APPENDIX B - GLOSSARY

Inventor’s Guide

27
6-

21
78

-E
-0

61
0

Glossary
Arcade-style Controls – Control Subsystem
A driving mode in which the robot is controlled with
one joystick on the controller, like an arcade game.
Also called 12 mode because axes 1 and 2 are being
used to drive the robot.

Attachment – Structure Subsystem
Generally, any piece that is “attached” and not
fundamentally part of the basic robot design.
Usually refers to such pieces as arms or sensor
modules, especially if they are removable.

Autonomous – Logic Subsystem
Technically, a robot must be able to function entirely
without human supervision to be considered fully
autonomous. Almost all real-world robot systems
are designed instead to work with partial autonomy
under varying degrees of human supervision.

Autonomous Mode – Logic Subsystem
The VEX robot has a simple pre-programmed
autonomous mode that uses two bumper or limit
switch sensors to detect obstacles as the robot
wanders around a room or course.

Axis (Joystick) – Control Subsystem
One of two axes (X and Y) along which a joystick
can move. Each axis on the joystick is associated
with an onboard potentiometer that measures the
joystick’s position along that axis.

Axis of Rotation – Motion Subsystem
The imaginary line around which a spinning object
rotates. This usually coincides with the axle for a
wheel or gear.

Axle – Motion Subsystem
A long, rigid piece through the rotational center
of an object (like a gear or wheel). Axles serve
two main purposes: to hold spinning bodies in
place relative to the rest of the structure, and to
transfer rotational motion from one spinning piece
to another (as in the case of a motor axle turning a
gear). Square bars are usually used as axles in the
VEX system.

#	
12 mode – Control Subsystem
A Transmitter driving mode where axes 1 and 2 are
used to control the primary navigation of the robot.
Also called Arcade-style controls.

23 mode – Control Subsystem
A Transmitter driving mode where axes 2 and 3 are
used to control the primary navigation of the robot.
Also called Tank-style controls.

4WD
Short for Four-Wheel Drive. A four-wheel drive
robot typically has four wheels, all of which are
powered independently. This usage is analogous,
but not identical, to the meaning of the term with
respect to automobiles.

A	
Acceleration – Motion Subsystem
In physics, acceleration is the change in velocity
of an object over time. In robotics, acceleration
usually refers to the ability of a robot to speed up or
slow down quickly on demand.

Actuator – Motion Subsystem
A term commonly used in industry to describe a
mechanical device used for moving or triggering a
mechanism.

Alkaline (Battery) – Power Subsystem
A class of battery chemistries commonly used in
disposable batteries. This type of battery is not
suited for use in robotics applications.

Allen Wrench
An L-shaped tool used to work with hex screws.

Analog Sensor – Sensor Subsystem
Analog sensors communicate with the
Microcontroller by sending an electrical voltage
that varies between 0 and the maximum voltage.

Analog/Digital Port Bank – Logic Subsystem
A group of ports on the Microcontroller used for
analog and digital communication with other parts
of the robot system.

Glossary • 122

APPENDIX B - GLOSSARY

Inventor’s Guide

27
6-

21
78

-E
-0

61
0

B	
Back-driving – Motion Subsystem
A condition where torque is transferred backwards
through a mechanical system, causing the driving
element (typically a motor) to be driven instead.
This can often be damaging to the mechanical
system and/or the motor. A clutch can be used to
disengage the motor if the back-driven force is
strong enough to cause damage.

Battery – Power Subsystem
Normally, any portable power source, such as the
VEX battery packs. Technically, a battery is a
collection of multiple cells, but single cells are often
referred to as batteries in common usage.

Battery Holder – Power Subsystem
The Battery Holder creates a 7.2V battery out of
(6) 1.2V AA cells (by connecting them in series) or
9.6V out of (8) 1.2V AA cells. The Battery Holder
also holds the AA cells in place on board the robot.

Bearing – Structure Subsystem
A piece that is used to hold a moving piece (such as
an axle) in place relative to the rest of the system.

Bearing Flat – Motion Subsystem
A commonly used type of bearing in the VEX
system. This bearing has three holes in a row. The
bearing is secured to the chassis through two of
the holes, and an axle is passed through the third,
which allows it to spin freely but not move out of
place relative to the chassis.

Behavior – Sensor Subsystem, Logic Subsystem
In the context of robotics, a behavior is the pattern
of actions a robot will enact when given certain
inputs or commands.

Bumper Switch Sensor – Sensor Subsystem
A high-durability sensor designed to detect physical
contact. This is a digital sensor.

Glossary

C
Calibrate (Sensor) – Sensor Subsystem
Calibrating a sensor is the process of matching
sensor readings against known values to ensure
that the sensor input is being interpreted correctly
in the program. Simple sensors, like the Bumper
and Limit Switches, typically do not need to be
calibrated.

Calibrate (Joysticks) – Control Subsystem
Calibrating the transmitter joysticks (also called
“trimming” the sticks) is the process of adjusting
trim values on the Transmitter to ensure that the
sticks produce no motor movement when they are
centered. A more thorough calibration process also
includes setting the scaling and end points to ensure
a full range of motion.

Carrier Wave – Control Subsystem
The carrier wave for FM communication is a simple
sine wave with a set frequency. It is then modified
(modulated) by the desired signal wave to produce
the final output wave that is sent to the receiver.

Caster Wheel – Motion Subsystem
A free-swiveling wheel mounted on a robot to
provide stability while producing a minimum of
friction. The front wheels on a shopping cart are
caster wheels; they support weight and stabilize
the cart, but do not add significant amounts of
friction like a skid would, nor do they change the
maneuvering characteristics of the cart like an
additional locked wheel would.

CCW
Short for Counterclockwise.

Cell – Power Subsystem
A single electrochemical unit producing a known
voltage differential, such as a single NiCd AA
battery, which has a voltage of 1.2V between the
+ and - terminals.

Glossary • 123

APPENDIX B - GLOSSARY

Inventor’s Guide

27
6-

21
78

-E
-0

61
0

Center of Gravity – Structure Subsystem
The robot’s center of gravity is the average position of
all the mass on the robot (technically, this is the center
of mass, but under terrestrial gravity conditions, they
are the same). It is critical that the center of gravity be
kept directly over the support polygon, or the robot will
fall over.

Challenge – VEX System
VEX Challenges are designed to give you a specific
task to accomplish by building a robot, and to open
possibilities for collaboration and competition with
other robot designers.

Chassis – Structure Subsystem,
Motion Subsystem
A vehicle’s basic structural frame, plus its locomotion
systems. In the VEX system, this is generally the
Structure Subsystem plus the Motion Subsystem,
minus any attachments.

Circumference
The distance around the edge of a circle. This quantity
is equal to pi times the circle’s diameter, or 2 times pi
times the radius.

Clockwise
A rotational “direction” that prescribes turning in the
same direction as the hands on a clock normally turn.

Clutch – Motion Subsystem
A detachable piece normally mounted to the VEX
motors that protects them from shock loads. These
should not be removed under most circumstances.

Collar – Structure Subsystem
A type of spacer that can be set to remain stationary at
any given point along an axle. These are often used to
keep other components on the axle (or sometimes the
axle itself) from sliding out of position.

Compound Gear – Motion Subsystem
A system of gears involving several pairs of gears, some
of which share axles with each other. When calculating
gear ratio, this whole system of gears behaves as if it
were a single gear pair with a gear ratio that might not
otherwise be achievable.

Glossary

Compound Gear Ratio – Motion Subsystem
The overall equivalent gear ratio produced by a
group of gears in a compound gear configuration.
This can often be quite high or quite low, due to the
multiplicative nature of gear ratios in a compound
gear system.

Configuration (Transmitter) – Control Subsystem
One of the 6 different control setups stored on
the RF Transmitter. Each configuration saves the
Transmitter menu settings that were set while using
that configuration number.

Control Subsystem
The subsystem responsible for collecting human
operator input and communicating it to the
Microcontroller.

Control Channel – Control Subsystem
One of the 6 pathways for control information
traveling from the Controller to the Microcontroller.
The X-axis of the right joystick, for instance, sends
its data over control channel 1 (that axis of the
stick itself is sometimes referred to as Channel 1
as a result). Note that control channels are not the
same as radio channels.

Counterclockwise
A rotational “direction” that prescribes turning in
the opposite direction from the way the hands on a
clock normally turn.

Crystal (Radio Frequency) – Control Subsystem
One of the crystals that determine the frequency on
which the Transmitter and Receiver operate. The
crystal used in the Transmitter Frequency Module
must match the crystal used in the Receiver for
controls to be sent and received properly.

CW
Short for Clockwise.

Glossary • 124

APPENDIX B - GLOSSARY

Inventor’s Guide

27
6-

21
78

-E
-0

61
0

Driving Mode (Transmitter) – Control Subsystem
The driving mode selected on the Transmitter
through the DRIVE menu, either “23 mode” or “12
mode.” This setting (together with Jumper 14 on
the Microcontroller) determines which combination
of joystick axes on the Transmitter will control the
robot’s movement.

E
Electromagnetic Waves – Control Subsystem
Technically, a time-varying electric field that
propagates through space at the speed of light,
caused by the acceleration of a charged particle.
More simply, an electronically controllable wave
that travels at the speed of light and can carry
information between two points through a variety of
encoding techniques.

End Points (Joystick) – Control Subsystem
End points control the percentage of the full power
command that will be sent by the Transmitter when
the joystick is pushed to the edge of its movement
area.

Exponential Scaling – Control Subsystem
A control scaling method that allows for “stiffening”
or “softening” of the feel of the joystick controls by
causing the output command value to increase faster
or slower than it normally would as the joystick is
moved away from the center of its movement area.

F
Fastener – Structure Subsystem
A general term for pieces (such as screws) whose
primary purpose is to hold two or more other
components together.

Floating – Structure Subsystem
As opposed to “locked.” Moving freely, not held in
one specific place. A collar floats freely on a square
bar when the screw is not tightened (it slides easily
up or down the bar).

Flush – Structure Subsystem
As in “flush against another part.” Pushed up
against something, leaving no space between them. A
collar is flush against a bearing when it is pushed up
against the bearing as far as it can go.

D
Deep Cycling – Power Subsystem
Draining a battery down to very low power (below
the normal cutoff levels) before recharging it. This
will wear a rechargeable battery out very quickly,
and should be avoided if possible.

Diameter
The distance from one point on a circle to the point
directly across from it. This quantity is equal to two
times the radius, or it can be multiplied by pi to find
the circumference of the circle.

Digital Sensor – Sensor Subsystem
Digital sensors communicate with the
Microcontroller by setting an electrical voltage in
the system to one of two values: either a digital
LOW equal to 0V, or a digital HIGH equal to the
maximum voltage on that port.

Discharge Cycle – Power Subsystem
Technically, any period during which power is drawn
from the battery and then recharged. Usually used
in one of two contexts: either when referring to the
usage pattern of a battery (using a battery for a
short time, then recharging it constitutes a pattern
of short discharge cycles), or when battery chargers
automatically drain the battery before recharging
it (the charger performs a “discharge cycle” on the
battery).

Drive Train – Motion Subsystem
All the parts involved in the primary locomotion
system of a robot, including the motors, gears,
axles, and wheels.

Driven Gear – Motion Subsystem
In a gear train, the last gear being turned. Usually,
this gear shares an axle with a wheel.

Driving Gear – Motion Subsystem
In a gear train, the gear that provides the energy
to turn all the other gears and their connected
components. This gear usually shares an axle with
a motor.

Glossary

Glossary • 125

APPENDIX B - GLOSSARY

Inventor’s Guide

27
6-

21
78

-E
-0

61
0

Gear Ratio – Motion Subsystem
The mechanical advantage, or “force multiplier”
generated by a group of 2 or more gears turning
together. For simple non-compound gear trains,
this can be calculated as the number of teeth on the
driven gear divided by the number of teeth on the
driving gear.

Gear Train – Motion Subsystem
In general, a group of gears that turn together to
transmit motion from one point to another on the
robot, often providing mechanical advantage along
the way.

Gripper
An attachment designed to pick up or hold an
object, often by “gripping” it with claw-like
appendages.

Gusset – Structure Subsystem
A piece used to strengthen an angled joint.

H
HIGH (Digital value) – Sensor Subsystem
One of two possible values in a digital system (the
other is LOW). The voltage used to indicate HIGH
usually corresponds to the maximum voltage of the
system.

Hub – Motion Subsystem
With wheels, the hub is the center portion of the
wheel that joins to the axle.

I
Idler Gear – Motion Subsystem
A gear in a gear train that is neither the driven
nor the driving gear, and does not share an axle
with another gear in the train (i.e. does not form
a compound gear). Each idler gear in the train
reverses the direction of spin once, but never affects
the gear ratio.

Glossary

Four Wheel Drive – Control Subsystem
A four-wheel drive robot typically has four wheels,
all of which are powered independently. This usage
is analogous, but not identical, to the meaning of the
term with respect to automobiles.

Frequency-Modulated Signals –
Control Subsystem
Frequency-Modulated (FM) signals are used in the
VEX system to encode data in radio transmissions.
Radio waves are a form of electromagnetic wave
with a very high frequency. The frequencies used
by the VEX system all have a carrier frequency
near 75MHz, which is part of the VHF (Very High
Frequency) band of the electromagnetic spectrum.
This carrier wave is then modulated by the signal
wave to produce a third wave, which is transmitted
through the air and received by the RF Receiver
Module on the robot.

Friction – Motion Subsystem
The force between two touching surfaces moving at
different speeds that acts to slow their movement
relative to each other. In robotics, this usually has
one of three contexts: friction between wheels and
ground that results in rolling wheels slowing down,
friction between wheels and ground that allows
wheels to “push off” and start moving to begin with
(rather than spinning in place), and friction between
any two components rubbing together in the robot
that result in loss of energy.

G
Gear – Motion Subsystem
Essentially, gears are spinning discs with teeth that
prevent them from slipping past each other. Gears
are frequently used to transfer rotational motion
from one piece to another, and to provide mechanical
advantage while doing so. The number of teeth on a
gear (assuming the same spacing between teeth on
both gears, so their teeth mesh properly) is directly
proportional to the gear disc’s circumference, thus
the number of teeth can easily be used to calculate
the gear ratios of gear trains.

Glossary • 126

APPENDIX B - GLOSSARY

Inventor’s Guide

27
6-

21
78

-E
-0

61
0

Interrupt Port Bank – Logic Subsystem
A port bank on the Microcontroller used primarily
for advanced programming functions.

J
Jumper – Control Subsystem, Logic Subsystem
A metal wire contained in a plastic housing that
can be placed (and removed) by hand to complete
(make) an electrical connection. These are most
often used to “set” options on the Microcontroller
by placing them in ports in the Analog/Digital Port
Bank. Placing a jumper in one of these ports closes
a circuit, setting the voltage for that port’s input
value, just like closing a limit switch sensor would.

K
Keps Nut – Structure Subsystem
A variant of the standard nut that includes a
toothed “crown” designed to bite into a mounting
surface and prevent the nut from slipping. Nuts
are used to allow a screw to function as a fastener
when the actual component being fastened does not
include its own threading.

Keying (connectors) – Logic Subsystem
An intentionally asymmetrical construction of a
connector to prevent backwards insertion. The
power port on the VEX Microcontroller is keyed
(the two plastic shapes in the middle are not the
same), for instance, so that the power plug cannot
be inserted upside-down. Keyed connectors are
sometimes called polarized connectors.

L
Lever – Structure Subsystem
One of the six “simple machines” that provides a
mechanical advantage. There are three main classes
of levers with subtle differences, but in general, long
pieces that rotate around any point on their length
will function as levers and can provide mechanical
advantage.

Glossary

Limit Switch Sensor – Sensor Subsystem
A small, contact-sensitive sensor that is most often
used for internal regulation of movement, and
should not be exposed to high-impact conditions.
This is a digital sensor.

Linear Scaling – Control Subsystem
A control scaling method that allows for control of
the overall range of motion and sensitivity of the
joysticks on the Transmitter.

Logic Subsystem
The subsystem responsible for onboard robot
operation, allocation of power, processing sensor
feedback, and interpretation of human operator
control.

LOW (Digital value) – Sensor Subsystem
One of two possible values in a digital system (the
other is HIGH). The voltage used to indicate LOW
usually corresponds to the zero (ground) voltage of
the system.

M
Master Channel – Control Subsystem
In a Programmable Mix, the Master Channel is
the control channel that, when manipulated by the
operator, will also affect the value on the designated
slave channel.

Mechanical Advantage –
Structure Subsystem, Motion Subsystem
The ratio of the force a machine can exert to
the amount of force that is put in. Mechanical
advantage can also be thought of as the “force
multiplier” factor that a mechanical system
provides.

Glossary • 127

APPENDIX B - GLOSSARY

Inventor’s Guide

27
6-

21
78

-E
-0

61
0

Memory Effect – Power Subsystem
Technically, the phenomenon where a rechargeable
battery that is repeatedly discharged to the exact
same level and then recharged will develop a
permanently diminished capacity. True memory
effect is observed only under laboratory conditions
and on board solar-powered satellites in space. The
more common usage of the term is incorrect, and is
frequently used mistakenly to refer to voltage drop.

Microcontroller – Logic Subsystem
The “brain” of the robot. The Microcontroller
contains the robot’s program and processes all
signals received from both human operators and
onboard sensor systems. It also manages power
allocation on board the robot, and directly controls
the motors.

Miscalibrated – Control Subsystem
A condition where two values which should be the
same do not, in fact, match each other. This occurs
frequently with the joysticks on the Transmitter,
which should produce a neutral motor state when
centered, but will often cause motors to turn slowly
instead when the sticks are released. Sensors that
indicate things like distances can also become
miscalibrated, and report values that do not reflect
the actual physical situation.

Mix (Transmitter) – Control Subsystem
A control setup where inputting commands on one
control channel influences the commands being sent
on other control channels.

Motion Subsystem
The subsystem responsible for the generation and
transmission of physical motion on the robot. This
includes motors, gears, wheels, and many others.

Motor (Electric) – Motion Subsystem
An electromechanical device that converts electrical
energy into kinetic (physical) energy on demand.
The motion generated by a motor is almost
always rotational in nature, and may need to be
mechanically redirected before it can be used to
produce the desired effect.

Glossary

Motor Port Bank – Logic Subsystem
The port bank on the Microcontroller where the
motors or servos are plugged in. The motors/servos
receive both commands and power through these
ports.

Motor Shaft – Structure Subsystem,
Motion Subsystem
A carried-over term from automotive engineering,
this usually refers to the axle (square bar) that is
directly driven by the motor.

Mounting Point – Structure Subsystem
Any place where a component can be conveniently
attached. An open spot on the front bumper, for
instance, may serve as a good mounting point for a
forward-facing sensor.

N
NiCd (Nickel-Cadmium) – Power Subsystem
The preferred battery chemistry for the VEX
Robotics Design System for performance reasons.
A NiCd (pronounced Nai-kad) battery is an
electrochemical cell which uses Nickel metal
as its cathode material, and Cadmium metal
as its anode material. Cadmium is highly toxic,
and should not be disposed of in the trash (call
1-800-8-BATTERY).

Nut – Structure Subsystem
Nuts are used to allow a screw to function as a
fastener when the actual component being fastened
does not include its own threading. A screw and a
nut “sandwich” the parts that are being fastened,
and hold them together. The nut provides threading
for the screw to lock into when none is present
otherwise.

O
Overcharging – Power Subsystem
Continuing to apply a charging voltage to the
battery after it has reached full capacity. This is
very likely to damage your battery, and can be
dangerous, as the battery will heat up rapidly while
being overcharged, and may even explode if it gets
too hot. Be sure your charger has the appropriate
safeguards so that it will not attempt to overcharge
your batteries.

Glossary • 128

APPENDIX B - GLOSSARY

Inventor’s Guide

27
6-

21
78

-E
-0

61
0

P
Parallel (Batteries) – Power Subsystem
A battery arrangement where multiple battery cells
are hooked up so that they provide the same voltage
as a single cell, but drain power evenly across all
the cells, thus behaving similarly to a single cell
with a very large capacity.

Pivot – Structure Subsystem
A structural component that provides a mounting
point for another component, but rather than
locking it in place, the pivot allows the attached
component to swivel or turn along a specific arc.

Potentiometer – Sensor Subsystem
An analog sensor which measures angular position.

Power Subsystem
The subsystem responsible for storing and delivering
electrical energy to the robot systems.

Programmable Mix – Control Subsystem
A feature of the Transmitter that allows the
operator to designate one master channel and one
slave channel to be used in a configurable control
mix.

R
Radio Channel – Control Subsystem
A shortened name for a radio frequency. Radio
frequencies often have long names, so they are given
“channel” designations to be used as shorthand.
75.410MHz, for instance, is referred to as Channel
61.

Radio Frequency – Control Subsystem
A designated carrier frequency for radio
transmission. Each transmitter-receiver pair
should operate on its own radio frequency, and
hence transmit data that will not interfere with
other signals in the air. The radio frequency for
a transmitter-receiver pair is determined by the
frequency crystals installed in both devices.

Glossary

Radius
The distance from the center of a circle to the
edge. This quantity is equal to half the diameter,
or it can be multiplied by two times pi to find the
circumference of the circle.

RBRC – Power Subsystem
Rechargeable Battery Recycling Corporation.
A non-profit organization that facilitates the
collection of rechargeable batteries for recycling,
because rechargeable battery chemicals (such as the
cadmium in NiCd batteries) tend to be very harmful
to the environment when thrown in the trash.
http://www.rbrc.org

RF Receiver Module – Control Subsystem
The Control Subsystem component that receives
and decodes FM radio signals that are sent by the
Transmitter. After decoding the signals, they are
passed on to the Microcontroller.

RF – Control Subsystem
Short for Radio Frequency, but often used to refer
to any system or component that deals with radio
transmission in any way (e.g. RF Receiver).

S
Screw, Hex – Structure Subsystem
A screw with a hexagon-shaped hole in the head,
allowing the screw to be tightened or loosened with
a hex L wrench.

Sensor Subsystem
The “eyes and ears” of the robot.
Electromechanical devices that can detect specific
things about the robot and its environment,
and communicate that information to the
Microcontroller through an electrical signal.

Series (Batteries) – Power Subsystem
A battery arrangement where multiple battery cells
are hooked up so that their voltages are added
together, thus behaving similarly to a single battery
with a much higher voltage.

Glossary • 129

APPENDIX B - GLOSSARY

Inventor’s Guide

27
6-

21
78

-E
-0

61
0

Servomotor – Motion Subsystem
An electromechanical device that converts electrical
energy into kinetic (physical) energy on demand.
The difference between a standard motor and a
servomotor is the way they respond to joystick
commands. A motor will spin continuously in one
direction or the other, whereas a servomotor will turn
to face a specific direction within a limited arc.

Signal Wave – Control Subsystem
In radio transmission, the signal wave represents the
data that is being sent, converted into a wave form in
order to be included in an FM transmission.

Skid – Motion Subsystem
A non-wheel piece which rests on the ground and
provides support for the robot, but is intended to
slide when the robot moves. Skids provide support
and stability without fundamentally altering the way
the robot maneuvers, but they can cause significant
friction, and often wear out quickly. Caster wheels
are the preferred alternative in most cases.

Slave Channel – Control Subsystem
In a Programmable Mix, the Slave Channel is
the control channel that is partly or completely
controlled by the Master Channel.

Software 12 Mix – Control Subsystem,
Logic Subsystem
A version of the “12 mix” arcade style controls
where the control mixing takes place in software
on the Microcontroller, rather than in hardware on
the Transmitter. The software implementation of
the controls also performs a few of the calculation
differently, resulting in a somewhat different feel
for the driver. This mode is activated by placing a
jumper clip on top of Analog/Digital Port 14 on the
Microcontroller.

Spacer – Structure Subsystem, Motion
Subsystem
There are several plastic spacers which are designed
to slide onto square bar axles between other parts (or
between parts and rails) to keep them from moving
too close together. They can also be used like collars
if enough spacers are added to keep the other parts
from moving at all.

Glossary

SPDT switch – Sensor Subsystem
Short for “Single Pole, Double Throw.” A switch
that is activated by a single contact (single pole),
but changes the state of two outputs at once (double
throw). The Limit Switch Sensor is an SPDT switch,
but one of the two outputs is hidden, making it
function effectively as an SPST switch.

Speed – Motion Subsystem
Technically, speed is the magnitude of velocity (i.e.
velocity, but without indicating direction). It is most
commonly used to mean the rate of movement of
a vehicle. By extension, it can also mean the rate
of rotation of a gear or wheel. It is also sometimes
used to refer to a vehicle’s potential maximum
speed, as opposed to its acceleration capability.

SPST switch – Sensor Subsystem
Short for “Single Pole, Single Throw.” A switch
that is activated by a single contact (single pole)
and changes the state of a single output (single
throw). The Bumper Switch Sensor is an SPST
switch.

Stability – Structure Subsystem
The ability of a robot to remain upright and steady
while moving over terrain and traversing obstacles.

Stall (Motor) – Motion Subsystem
A condition where a motor encounters so much
resistance that it cannot turn. It is damaging for the
motor to be in this condition. The motor can get hot
and can stop functioning.

Stick Mode – Control Subsystem
An advanced feature of the Transmitter that allows
control channels 2 and 3 to trade places on the
joysticks (2 becomes the right stick’s vertical axis
and 3 becomes the left stick’s vertical axis). The
default mode is 2, and should not be changed under
most circumstances.

Stress (Structural) – Structure Subsystem
Physical forces acting on an object constitute
mechanical stress. Too much stress concentrated on
a small area can cause parts to bend or break.

Glossary • 130

APPENDIX B - GLOSSARY

Inventor’s Guide

27
6-

21
78

-E
-0

61
0

Structure Subsystem
The subsystem responsible for holding the rest of the
subsystems together and in place, and for protecting
them from physical harm.

Subsystem
A subdivision of a system that helps to organize
the system into convenient compartmentalized
functions. The lines between subsystems are not
always perfectly clear (for example, a wheel’s axle
is both a motion-transferring device and a physical
support), but they work to give a general idea of
purpose for the components in a system.

Support – Structure Subsystem
The degree of physical stability a piece has, owing
to the strength of the foundation provided by the
other pieces which are holding it in place. A piece
which provides a physical brace or foundation for
another piece is also called a support.

Support Polygon – Structure Subsystem
The imaginary polygon formed by connecting all
the points at which the robot touches the ground.
In cases where the arrangement of ground contact
points is complex, the support polygon is the largest
convex polygon that can be formed by those points.
If the center of mass of the robot is not directly over
the support polygon (i.e. projecting a line straight
down from the center of gravity would not intersect
the support polygon) at all times, the robot will fall
over.

T
Tank-style Controls – Control Subsystem
A Transmitter driving mode in which the robot
is controlled with only the vertical axes of the
joysticks. Each joystick controls the motion of one
side of the robot, like an old tank. Also called 23
mode because axes 2 and 3 are being used to drive
the robot.

Glossary

Tether – Control Subsystem
A cable used to connect the Transmitter directly
to the Microcontroller. Using a tether allows you
to control the robot by sending signals through the
cable rather than through the air, eliminating the
possibility of radio interference. You can use any
telephone handset cable (the one that goes from the
base to the handset of a corded phone) as a tether.

Threaded – Structure Subsystem
A threaded piece has threading on or in it, which
allows a screw to be fastened into it. Threading is
the tiny spiraling texture on the outside of a screw
or the inside of a nut (for example) that allows a
screw to be locked into place.

Torque – Motion Subsystem
Angular (“spinning”) force. Torque can be
converted into linear (“pushing”) force where a
wheel comes in contact with the ground.

Traction – Motion Subsystem
An overall measure of how well a tire is able to grip
the ground. Many factors (texture, size, material,
etc.) must be taken into account when evaluating a
tire’s traction on different surfaces.

Transmitter – Control Subsystem
The primary user interface device for the human
operator of the robot. The Transmitter gathers
input from its two joysticks and four buttons,
and transmits them via FM radio wave to the RF
Receiver mounted on the robot.

Transmitter Battery Holder – Power Subsystem
The battery container for the Transmitter. The
battery holder contains the 8 NiCd AA batteries in
place required to operate the Transmitter. If you
wish to use the 9.6V battery pack, the Battery Box
can be easily removed to make room for the 9.6V
pack.

Glossary • 131

APPENDIX B - GLOSSARY

Inventor’s Guide

27
6-

21
78

-E
-0

61
0

Glossary

Transmitter Frequency Crystal –
Control Subsystem
The swappable module in back of the Transmitter
that designates the radio frequency that the
Transmitter will use to communicate with the RF
Receiver Module. The frequency of the Transmitter
Frequency Module must match the frequency of the
crystal installed in the RF Receiver Module on the
robot in order for them to communicate. All VEX
Systems come with the same Transmitter Frequency
Module. Additional modules on different frequencies
are available for purchase separately.

Trickle Charge – Power Subsystem
A very low-power charge that is applied to full
batteries in order to keep them full. A trickle charge
counteracts a battery’s natural loss of charge over
time, so that the battery can be left on the charger,
and still always maintain a full charge.

Trim – Control Subsystem
The calibration setting for the joysticks on the
Transmitter. Also, the name of the menu on the
Transmitter that allows for fine tuning of these
settings.

V
Voltage (Battery) – Power Subsystem
The electrical voltage difference between the
+ and – terminals on a battery. Different batteries
and battery packs have different starting voltages.
Voltage falls (though not all the way to 0) as the
battery’s power is used up, and can be used as a
rough indicator of the amount of capacity remaining
on a battery.

Voltage (Electrical) – Power Subsystem
The difference in electrical potential between two
points in a circuit or electrical field. An electron
or other charged particle has more energy at one
of the two points, and will tend to move toward the
other point.

Voltage Drop – Power Subsystem
A phenomenon exhibited by rechargeable batteries
where a battery that is frequently “shallow
discharged” (discharged only a little between
recharges) will begin to experience reduced
performance. This can be reversed by discharging
the batteries to a nearly-empty safe level (when the
robot automatically turns off, for example–NOT by
shorting them or draining them to 0V by external
means!) and then recharging them to full capacity.
Repeating the drain-charge cycle a few times should
restore the batteries to full performance.

W
Washer – Structure Subsystem
A round metal or plastic disc placed between a
screw head or nut and the surface to which it is
mounted. The washer gives the screw a secure
surface to brace against, and prevents the screw
head from bending the metal surrounding the hole
and popping all the way through. Steel washers
should be used with screws that are not meant to
move at all. Delrin (white plastic) washers should be
used when the entire screw-nut assembly is meant
to turn together (e.g. the screw at the pivot of a
movable arm attachment).

	Title Page
	Reference Links
	Introduction to the Structure Subsytem
	Robust Construction
	Introduction to the Motion Subsytem
	Cortex Pin Guide
	VEX Cortex Configuration over USB
	Using the PLTW Template
	Sample Programs
	Running a Program
	VEXnet Joystick Configuration
	Sense Plan Act
	Behaviors
	Pseudocode and Flowcharts
	Program Design
	ROBOTC Natural Language Cortex Quick Reference
	ROBOTC Debugger
	White Space
	Comments
	Boolean Logic
	Variables
	Reserved Words
	While Loops
	If Statements
	Variables
	Thresholds
	Timers
	Functions
	Switch Case
	Random Numbers
	Error Messages in ROBOTC Code
	Toubleshooting ROBOTC with Cortex
	2 Wire Motor 269
	2 Wire Motor 393
	Servo Module
	Servo Motor
	Flashlight
	Color Camera
	Ultrasonic Sensor
	Bumper Switch
	Limit Switch
	Optical Shaft Encoders
	Optical Shaft Encoders
	Potentiometers
	Potentiometers
	Line Following
	Light Sensor
	ROBOTC Reference Glossary
	VEX Inventors Guide Glossary

	Go to Reference Links:

